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PREFACE

Fifty years ago a large section of the general public were not

only uninterested in what we now call the social problem, but they

scarcely gave a thought to the existence of such a problem. They

felt vaguely perhaps, during periods of acute distress due to lack of

employment, that all was not well and they thought the Govern-

ment or possibly the big landowner was to blame, but only the

more enlightened realized the complexity of the body politic and

how fearfully and wonderfully it is made. To-day all this is changed,

and comparatively few imagine that a single panacea—the pro-

hibition of drink, the nationalization of land, or a levy on capital

—

will cure all evils.

The very fact that nearly the whole civilized world has given

itself up for over four years to the destruction of life and the dragging

down of the social fabric in all countries on so vast a scale has

led to a surfeit and a reaction in which thoughtful men are eager

to take part in proclaiming again a common brotherhood and in

building a better world. Those who have always been interested

in this kind of architecture welcome the change of spirit, but they

also recognize the difficulty of the task undertaken and the need

for no little mental effort to second the good-will, which is the first

essential for success. To pull down no teacher is needed, but we

must learn to build.

This leads one to the subject of the present book. The man who

wishes his work to stand must make sure of its foundations. He

cannot afford to rest satisfied, as too often the politician and social

. worker do, with wild and ill-informed generalizations Avhere more

<i exact knowledge is possible, and there are few human problems in

the discussion of which some acquaintance with the proper treat-

ment of statistics is not in the highest degree necessary.

^
^



VI STATISTICS

Most people, however, are suspicious of figures. They imagine

that quantitative considerations must of necessity deaden all

feeling for the purely aesthetic or qualitative spirit which is the

very life of the phenomena observed or measured. But this surely

need not be the case. Kepler, when he succeeded in translating

the motions of the planets into the language of number was not, we

believe, the less but rather the more enamoured of the beauty and

order with which the whole of creation is clothed.

A second reason for suspicion is that partisans of one school or

another with more push than j)rinciple sometimes trade upon the

general ignorance of statistics to ' prove ' their own pet theories,

while others no less enthusiastic lead the credulous public into the

ditch, not witli malice intent, but because they are really blind

themselves to the right interpretation of the figures they so glibly

quote.

Although a concern in social questions led the present writer in

the first instance to study the theory of statistics, there is no reason

why this bias should prevent the book being of service to those who

wish to know something of its application in other directions, seeing

that the general principles underlying the theory are the same in

all cases, and illustrations have been taken from any field, biological,

economic, medical, etc., just as the}^ suited the immediate purpose

in view.

The author makes no claim to any originality : he is no more

than a student seeking to put together, with some kind of system

and as he understands them, the simpler and more important ideas

he has gathered from other sources. The matter is entirely the

work of others, the manner only is his own, and he will be happy

to receive criticism if thereby he may learn more. His chief quali-

fication for writing is that he has had to worry through most of

his difficulties alone, and consequently he knows where another

student is likely to be in trouble better perhaps than the kind of

writer who is so quick as to be able to see through things at a glance

or, failing that, so fortunate as to be able to borrow immediate

light from others.

The book is divided into two parts. Practical]}^ all the first part

should be well within the understanding of the ordinary person.
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Part II. is more mathematical, but an effort has been made through,

out to explain results in such a way that the reader shall gain a

general idea of the theory and be able to applj' it A\ithout needing

to master all the actual proofs. The whole is meant, not as an

exhaustive treatise, but merely as a first course introducing the

reader to more serious works, and, since real inspiration is to be

found noM'here so surely as at the source, it is intended to encourage

and fit him to pursue the subject further by consulting at least the

most important original papers referred to in the text, only enough

references being given to awaken curiosit}-. With the same inten-

tion a short chapter is inserted after the Appendix by way of sug-

gesting a few of the sources of statistics likely to be of interest to

the social student.

Some living WTiters, notably Professor Karl Pearson, have

contributed so largelj' to the development and application of

statistics that it is impossible to write upon the subject at all without

incorporating large parts of their ^^•or]v, and the least one can do

is gladly to record the benefit and pleasure one has received from

them. The author's indebtedness to the two most important

English text-books—Yule's Theory of Statistics and Bowley's

Elements of Statistics—will be evident also to any one who knows

these books, for they became so familiar through constant study

that he fears he may have drawn upon them unconsciously even

to the point of plagiarism in places.

Finally, he wishes specially to the acknowledge kindness of four

friends—Mr. Peter Fraser, Lecturer in Mathematics at Bristol Uni-

versity, without whose encouragement in the early stages the work

would never have been attempted ; Professor H. T. H. Piaggio,

University College, Nottingham, and Mr. A. W. Young, sometime

Lecturer at the Sir John Cass Technical Institute, London, whose

criticisms and suggestions were most valuable ; and Professor

W. P. Milne, of Leeds University, who, both as a practical teacher

and as Editor of this series, ungrudgingly gave his help and advice.

D. C. J.



NOTE TO THE SECOND EDITION

The kindly reception given to my book leads me to think that

it might appeal to a wider circle of readers if they were not

frightened by the mathematical appearance of certain pages in the

second part. With this new issue it has been made possible to

obtain Part 1. and Part II. separately.

A selection of examples from London, B.Sc. (Econ.) papers has

been included by kind permission of the Authority concerned. It

is hoped that these may prove useful to students. An Index has

also been added. Otherwise no changes of importance have been

made in the text.

D. C. J.

September 1924.
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PART I

CHAPTER I

INTRODUCTORY

Early Historical Beginnings. Statistics, more or less valuable,

have been compiled in most civilized countries from very early

times. One reason for doing this on a large scale has been to

ascertain the man-power and material strength of the nation for

military or fiscal purposes, and we read in the Old Testament of

such censuses being taken in the case of the Jews, while among the

Romans also it was a common practice.

In England, as economic terms began to be used and their mean-

ings analysed, and especially during the period A^hen the mercantile

system prevailed, and the Government endeavoured so far as was

practicable to direct industry into channels such that it would add

most to the power of the realm, men tried frequently to base argu-

ments for social and political reform upon the results of figures

collected. A distinct advance had been made in the seventeenth

century when mortality tables were drawn up and discussed by Sir

William Petty and Halley, the famous astronomer, among others,

and their labours prepared the way for a more scientific treatment

of statistical methods, especially at the hands of one, Siissmilch, a

Prussian clergyman, who pubhshed an important Avork in 1761.

It is almost true to say, however, that until the time of the great

Belgian, Quetelet (1796-1874), no substantial theory of statistics

existed. The justice of this claim will be recognized when we

remark that it was he who really grasped the significance of one

of the fundamental principles—sometimes spoken of as the constancy

of great numbers—upon which the theory is based. A simple illus-

tration will explain the nature of this important idea : Imagine

100,000 Englishmen, all of the same age and living under the same

normal conditions—ruling out, that is, such abnormalities as are

occasioned by wars, famines, pestilence, etc. Let us divide these

men at random into ten groups, containing 10,000 each, and note

the age of every man when he dies. Quetelet's principle lays

A
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down that, although we cannot foretell how long any particular

individual will live, the ages at death of the 10,000 added together,

whichever group we consider, will be practically the same. De-

pending upon this fact insurance companies calculate the premiums

they must charge, by a process of averaging mortality results re-

corded in the past, and so they are able to carry on business without

serious risk of bankruptcy.

As a distinguished statistician once said, ' By the use of statistics

we obtain from milliards of facts the grand average of the world.'

But if the average resulting from our observations were subject to

violent fluctuation as we passed from one set of facts to another

cognate set there would be little satisfaction in fbiding it. It is

the comparative constancy of the average, if the number of our

observations is large enough, which makes it so important, as

Quetelet observed, for although the idea was not altogether new he

first reahzed how wide an application it had and how fruitful of

practical results it might prove.

Quetelet w^as born in Ghent, and taught mathematics in the

College there in his early youth. After graduating as Doctor of

Science he became Professor of Mathematics in Brussels Athenaeum

when only twenty-three years old, and later he was made Director

of the Brussels Observatory, in the foundation of which he had

taken a leading part. In 1841 he was appointed President of the

Central Commission of Statistics, where he was in a position to

render valuable assistance to the Belgian Government by his advice

on important social questions. He initiated the International

Statistical Congress, which has served to bring together the leading

statisticians of all countries, and the first meeting was held in 1853

at Brussels. His death occurred at the ripe age of seventy-eight.

Some idea of the extent of Quetelet's statistical researches may
be gathered from the titles of his chief works : (1) Sur Vhomme et

le developpement de ses facultes, ou essai de physique sociale (1835)

;

(2) Lettres . . . sur la theorie des probabilites appliquee aux sciences

morales et politiques (1846) ; (3) Du systeme social et des his qui le

regissent (1848) ; (4) L'Anthropometrie, ou mesure des differentes

facultes de Vhomme (1871).

In his writings he visuaHzes a man with quahties of average

measurement, physical and mental {Vhomme moyen), and shows

how all other men, in respect of any particular organ or character,

can be ranged about the mean or average man, just as in Physics

a number of observations of the same thing are ranged about

the mean of all the observations. Hence he concluded that the



INTRODUCTORY 3

methods of Probability, which are so effective in discussing errors

of observation, could be used also in Statistics, and that deviations

from the mean in both cases would be subject to the binomial law.

Hain in Vienna put some of Quetelet's ideas to good service in

1852, emplojdng a superior method for the calculation of statistical

variabiHty. ELnapp and Lexis in Germany, also following up

Quetelet's principles, made an exhaustive investigation several years

later of the statistics of mortaUty, and their work has been extended

in many directions, and in our OAvn time notably by Galton, Karl

Pearson, and Edgeworth.

The name of Sir Francis Galton (1822-1911), to whose work as

a pioneer the science of Statistics owes so much, is deserving of

even greater honour than it has yet received. Founder of the School

of Eugenics, Galton himself came of famous stock, being grandson

of Erasmus Darwin and a cousin to Charles Darwin. He studied

medicine in early youth, but after graduating at Cambridge his

attention was turned to exploration, and the Royal Geographical

Society awarded him a gold medal on the results of his investiga-

tions in South-West Africa. His first great work on heredity was

not pubhshed till 1869, after he had already earned distinction in

other directions, for he was elected a Fellow of the Royal Society

in 1860. Ahve with new ideas, marvellously patient and persistent

in bringing them to the test of observation—quahties essential for

real scientific research—he set himseH to inquire into the laws

governing the transmission of characteristics, physical and mental,

from one generation to another. Large tracts of this ground have

since been carefully explored and mapped out by the school of

his great successor, Karl Pearson, who has originated formulae for

testing the extensive anthropometrical and biological data col-

lected. Largely as a result of their work it is now widely recognized

that ' the whole problem of evolution,' as Professor Pearson himself

has well said, ' is a problem in vital statistics—a problem of longevity,

of fertihty, of health, and of disease, and it is as impossible for the

evolutionist to proceed without statistics as it would be for the

Registrar-General to discuss the national mortality without an

enumeration of the population, a classification of deaths, and a

knowledge of statistical theory.'

Logical Development. The best way to approach the study of

any subject, if one had time, would be along the lines of its historical

development, but these lines seem so often to diverge from the

main theme, like branches from the parent stem of a tree, that
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when one tries to describe them the general effect is apt to be some-

what confusing. It is therefore usually the custom to adopt a

logical rather than a historical sequence, but it may assist the reader

to see the connection between the two and the miity which embraces

the whole if we now briefly trace the natural growth of the subject,

suggesting the steps we might expect it logically to take. This we

have tried to keep in view as nearly as possible in the succeeding

chapters, excejot that the order may have been altered here and

matter may have been omitted or inserted there as reason and

the elementary nature of the work dictated :

—

1. Omng to the difficulty which the mind experiences in grasping

a large mass of figures, the necessity for an average arises to sum

up shortly the character of the mass, and various kinds of averages

are proposed.

2. An average proves insufficient alone to define the whole scheme

of observations, and other constants are invented to measure their

spread or dispersion about the average.

3. Considerations of space and the desire for some kind of system

lead further to the formation of tables with the observations classi-

fied in ordered groups.

4. The formation of these tables suggests the possibility of a

graphical representation of the numbers in the different groups to

bring out the nature of their distribution.

5. The impossibility of deaUng with a whole population results

in the selection of samples, and the comparison of one sample with

another introduces the subject of random errors.

6. The closer examination of this subject leads us into the domain

of mathematical probabiUty and discovers the probability curve, or

normal curve of error, first formulated in connection with the study

of errors of observation.

7. This same curve serves in the sequel to describe a certain

important type of statistical distribution, in which each observation

is determined by a multitude of so-caUed chance causes pulling this

way and that, so that it is impossible to foretell what the resultant

effect will be.

8. The failure of the normal curve to describe other common dis-

tributions, especially those which are unsjonmetrical in character,

leads to the development of skew varieties of curves which will

fit them.

9. The extent of connection between one set of data and a pos-

sibly related set is a natural subject for inquiry giving rise to the

theory of correlation.



CHAPTER II

MEASUREMENT, VARIABLES, AND FREQUENCY DISTRIBUTION

Measurement. There are two fundamental characteristics which

pertain to nearly all measurement : it is (1) relative : it involves

a comparison between one magnitude and another of the same kind,

and (2) approximate : the comparison in practice cannot be made
with absolute exactness.

A man's height, for example, is stated to be 5 ft. 8| in., but this

would convey little to one who did not know how long a foot was

and how long an inch was. The first step in the measurement is ,

made by comparing the man's length with a certain constant

length previously agreed upon as a standard or unit, namely, a
' foot ' ; he is placed to stand up against a scale which is divided

up into feet, and the highest point of his head is seen to come

somewhere betAveen the 5 ft. line and the 6 ft. line : he is there-

fore longer than five of these units, set end to end, but not so long

as six of them. To carry the measurement a stage further a smaller

unit has to be introduced ; each foot length of the scale is sub-

divided into twelve equal parts called inches, and the top of the

man's head is found to come somewhere between the 5 ft. 8 in.

line and the 5 ft. 9 in. line : he is therefore over 5 ft. 8 m., but

not quite 5 ft. 9 in. in height. For the next stage in the measure-

ment each inch of the scale has to be further subdivided into quarter-

inches, and the top of the man's head is found to come somewhere

between the 5 ft. 8 in. 3 qu. in. fine and the 5 ft. 9 in. line ; more-

over it is nearer, let us suppose, to the former line than to the latter.

In this case, then, we say that the man's height or length is 5 ft.

8| in., measured to the nearest quarter inch.

In measurement the decimal notation has very obvious advan-

tages, because each unit is always divided into ten equal parts to

get the next smaller unit. Thus a w^eight of 7 Idlogr. 5 hectogr.

3 decagr. 8 gr. 4 decigr. 3 centigr. can be expressed at once in

grammes, namely 7538-43 gr. ; hence if we were measuring to the

nearest decagramme, the result would be expressed as 754 decagr.
;

to the nearest decigramme, it would be 75384 decigr., etc.
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Similarly, a length of 12 kilom. 7 metres 2 centim, can be WTitten

12007-02 metres, or, in kilometres, 12-00702 kilom., or, to the nearest

decametre, 1201 decam., and so on.

The mere act of counting things of a like kind is, in a sense,

measurement of a primitive type, one thing being the unit, though

the measurement may in many such cases be exact ; for example,

we may count the number of persons in a room exactly. Even in

this type of case, however, the counting or measuring cannot

always be done accurately, but the inaccuracy arises from lack of

precision and miiformity in definition rather than from want of

power in the measuring instrument itself : e.g. in determining the

population of a city, inaccuracies may arise because of failure to

define exactly the boundaries of the city, or the time at which the

census is to be taken, or how to deal with the migration of the in-

habitants from or into the city, and with births and deaths during

the actual time of numbering.

Variables. By a variable is meant any organ or character which

is capable of variation or difference in size or kind. The diflference

may be measurable as in the case of head-length, height, tempera-

ture, etc., or not directly measurable as in the case of colour, intelli-

gence, occupation, etc . Further, the variation, when measurable, may
be continuous, or it may take place only by integral steps, omitting

intermediate values : population, for example, can never go up or down
by less than one, but if temperature is to change from 60 degrees to

61 degrees it must pass continuously through every intermediate

state of temperature between 60 degrees and 61 degrees.

In dealing with a measurable variable sometimes we are inter-

ested not so much m its actual value at a particular instant as in

the change which has taken place in its value during some specified

interval, but to gauge fairly the amount of this change it is necessary

to measure it relative to the original value of the variable. For

example, if we are told that the wages of a certain person have

gone up during the year to the extent of 3d. an hour, we cannot

say whether this is much or little to him until we know what his

wages Avere originally. The addition would be relatively much less

if he were a skilled patternmaker earning Is. 6d. an hour than it

would be if he were a chainmaker earning only 6d. an hour.* This

point can be met by stating, not simply the change in the value of

the variable, but the ratio of the new value to the old. For instance,

the patternmaker in the above instance has had his wages increased

[* Wages to-day are, ot course, much higher—the above figures are only hypothetical.]
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in the ratio of Is. 9d. to Is. 6d. It is important to notice that

this form of measurement is quite independent of the particular

vmits used ; if we take Id. as unit, the ratio=21/18=7/6, and if

we take Is. as unit, the ratio=l|/l|=7/6 just as before.

There are other ways of measuring this change in the value of

a variable. One of the commonest is to express it as a percentage

of the original value ; thus the patternmaker's increase is at the

rate of y^xlOO, or 16f per cent., which is simply the ratio of

increase in wage to previous wage multiphed by 100. The multiplier,

100, is quite an arbitrary factor, but it has obvious advantages : among

others, it works well with the decimal notation and it often serves

to put the result into a form which is greater than imity instead of

leaving it as a fraction. Again, a man who gets a dividend of £25

on an investment of £500 receives interest at the rate of yVo X 100,

or 5 per cent. ; in other words, this is the rate at which his capital

accumulates if the interest is added to it instead of being spent.

Annual birth rates and death rates, on the other hand, are best

expressed per thousand of the population, as estimated, say, at

the middle of the year in question ; e.g. the birth rate of the United

Kingdom in 1911 was 24-4 per thousand, and the death rate was

14-8 per thousand, which is equivalent to 244 and 148 per 10,000

of the population respectively. If we could assume the birth

and death rates to remain constant from year to year, and if we

could afford to leave migration out of account, the population

would be subject to exactly the same law of increase as capital

accumulating at compound interest [see Appendix, Note 1], thus :

—

1. If P be the original population, and if the annual net increase

be at the rate of 25 per thousand, then

the population in 1 year's time=Px (1-025)

2 „ =Px (1-025)2

3 „ =Px (1-025)3

n „ =Px (1-025)".

2. If £P be the original capital, and if the annual increase be at

the rate of 2| per cent., then

the capital in 1 year's time=Px (1-025)

2 „ =Px (1-025)2

3 „ =Px (1-025)3

n „ =Px (1-025)".

Lest we may seem to have laboured to make plain what is really

a simple idea, it may be remarked that quite frequently confusion

arises with regard to percentage even in reputable quarters. As an
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illustration of the kind of mistake which, without thinking, is easily

made, the following argument has been taken from a monthly

circular sent out a httle while ago to the members of the Boiler-

makers' Society by their Secretary : Since July 1914, wages have

risen 15 per cent., the cost of living has gone up 45 per cent., therefore

the workers' real wages have fallen 30 per cent. This same argument

was quoted shortly after in one of the leading articles of The Man-
chester Guardian under the heading ' Prices and Wages,' and again

in The Labour Leader tersely as truth ' In a Nutshell,' but in

neither instance did it seem to have occurred to the writer that it

v/as inaccurate. It may be worth while for the sake of clearness to

show what the statement should have been :

—

Wages.
Cost of

Living.

Ratio of Wages to

Cost of Living.
Same Ratio

multiplied by 100.

July 1914 .

October 1916 .

100

115

100

145

1 100

79

Since xil X 100 is roughly 79, this calculation shows that ' real

wages ' had fallen only about 21 per cent. (100—79=21), and not

30 per cent, as stated, between the two dates.

Index Numbers. A very important case of variables changing

with time appears in the discussion of changes in the value of

money as measured by the movement of prices of commodities,

introducing the notion of an index number. For example, supposing

the wholesale price of beef was 6d. a lb. at one date, 8d. a lb. at

another date, and 5|d. a lb. at a third date, the change might be

exhibited as in the following table :

—

1st Date. 2ad Date. 3rd Date.

Price of beef

100

8cZ.

133

5|d.

92

Here 100, 133, and 92 are called index numbers, the price at the

first date being taken as a standard and denoted by 100, while

the prices at the other two dates are altered j)roportionally, so that

6:8:51=:: 100: 133:92.

Index numbers calculated on this principle have been published

systematically for several years by Mr. A. Sauerbeck (in the Journal
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oj the Royal Statistical Society up to January 1913, and continued

afterwards in The Statist under the supervision of Sir George Paish)

and in The Economist.

In Sauerbeck's index numbers the average wholesale prices of

forty-five commodities for the eleven years 1867-77 are taken as

the standard, being denoted each by 100 as above, and the prices

of the same commodities for any other year are then MTitten as

percentages of these standard prices. The commodities chosen are

various—food of all kinds (cereals, meat, potatoes, rice, butter,

sugar, coSee, tea), minerals (including coal), textiles, and sundries

(including hides, leather, tallow, palm oil, olive oil, linseed,

petroleum, soda, soda nitrate, indigo, timber). Articles of similar

character are grouped together ; naturally no class is exhaustive,

but the selection is a fairly representative one. A sort of general

average is then formed by combining all the results, and the move-

ment of this average is taken to measure changes in the value of

money. An example wiU make clear the way in which an index

number for each group and the general average are obtained.

The index number for each separate commodity may be first

calculated thus :

—

Pkice of English Wheat.

Years. QtX: Index Number.

1867-77

1912 .

s. d.

54 6 100

34 9 64

Now forming similar index numbers for each of the eight vegetable

and cereal foods and combining them together, we have :

—

Index Numbers for Vegetable AND Cereal Foods

Years.
.2 c« Mi

a> ^
3
o
S

_5'

o

6
'3

01

o

o
Cm

0)

bo O

o
O

>
<

1867-77 . 100 100 100 100 100 100 100 100 800 100

1912. 64 68 70 79 83 85 74 101 624 78

The figures m the last column but one are obtained by simply

adding the figures in the eight previous columns, and, dividing these
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results by eight, we get the average index number for the group

in 1912 as a percentage of that in the standard years 1867-77.

Treating all the other commodities in the same way we ultimately

get index numbers for all the different groups and for all com-

modities combined as follows :

—

Index Numbers for different Groups and
FOR ALL Commodities.

No. of Commodities 8 7 4 19 7 8 11 45

Years.

m w ri
o
o

"cS

£
"S
<1

UO ID

t«5C
o
o

a

i .2 1

a \

a
o
O

1867-77

1912.... 100

78

100

96
100

62

100

81

100

110

100

76

100

82

100

85

The index number for ' All Food ' is obtained by summing the

nineteen index numbers for the separate commodities which are

included in this class and dividing the result by 19. Similarly the

general index number for all commodities is obtained, not by

adding the numbers for the different groups and dividing by the

number of groups, but by adding the forty-five index numbers of

all the separate commodities and dividing the result by 45.

In The Economist the average prices of twenty-two commodities

for the years 1901-5 are taken as the standard, being denoted

each by 100, and the prices of the same commodities for any other

year are then written as percentages of these standard j)rices ; the

sum of these percentages is taken as the index number, and it is

a simple matter to divide by 22 if we wish to get the average per-

centage change. The following table explains the method of

calculation :

—

Index Numbers representing Prices of Commodities

Date.
Cereals
and

Meat.

Ofciif Textiles.
Foods.

1

Minerals.
Miscel-

laneous.
Total.

Index No-

22.

1901-5 .

End of Dec. 1916
500
1294

300 500
553 1124-5

1

400
824-5

500
1112

2200
4908

100

223
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In this table five commodities are included under the head of

' Cereals and Meat,' three under ' Other Foods,' and so on. The

numbers in the last column are obtained by dividing those in the

previous column by 22.

It is clear that what is at bottom the same principle may be

applied in any case of a variable changing with time when we wish

to measure the extent of the change, so that the use of index numbers

is not confined to the problem of prices. We shall return again to

discuss one or two further points in connection with the same

subject in the Chapter on ' Averages.'

Frequency Distribution. So far we have been thinking more

particularly of the change which an individual variable, or a col-

lection of such variables, may undergo in the course of time, or the

difference between two values which the same variable may have

at two different instants of time, and how to measure it. Now
the science of Statistics is based upon the study of the crowd

rather than of the individual, although observations on individuals

have to be made before they can be combined together to produce

the crowd, just as individual income-tax schedules have to be

completed and combined before the balance-sheet of the State can

be drawn up. As we pass from one individual to another there

may be great differences in the organ or character observed—hence

the word variable already introduced—but in the mass these differ-

ences are merged together and lose their individual importance :

it is rather their resultant effect we seek to measure. In order

therefore to discover this effect it is necessary to make a collection

of individual observations and to analyse the results. Now if our

ultimate conclusions are to be safe the number of observations

must be considerable, and in order to be able to cope with them

and reduce them to some sort of system the first step in the analysis

consists in arranging them in different classes according to the

value of the variable under consideration.

It is to be noted that now we are dealing with changes in the

value of a variable as we pass from one individual to another at the

same period of time and mider the same general conditions, and not

with the change in a variable in the same individiial occurring with

the lapse of time. We wish, for example, to draw a distinction

between (1) the change in wages as we pass from one man to another

at the same time in the same trade, and (2) the change in wages of

the same man, or class of men, in the same trade occurring in a

given period of time ; in the first case we w ant to find the amount
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of diversity within the trade at some stated time, and in the second

our object is to discover whether an improvement has taken place

in the wages of a particular individual or a particular trade with

the passage of time.

In picturing variation of the first type the conception arises of a

frequency distribution where the observations are distributed in

ordered groups, with a number corresponding to each sho^^dng

how many, or how frequent, are the individuals possessing the type

of variable or character which defuies that group. More generally,

if a series of measurements or observations of a variable y are

made corresponding to a selected series of another variable x we

get a distribution, which becomes a frequency distribution when y
represents the frequency of events happening in a particular way,

or of individuals corresponding to a particular value of some

common variable or character, represented by x. Thus (1) the

boys in a school might be grouped according to their intelligence :

so many, dull ; so many, of ordinary intelligence ; and so many,

bright or above the ordinary. Again (2) in an inquiry into the

housing of the people in any town or district it would be necessary

to draw up a table showing the number or frequency of existing

tenements with one room, the frequency of tenements with two

rooms, the frequency of tenements with three rooms, and so on.

Once more (3) a zoologist, wishing to discover whether crabs of a

certain species caught in one locality differ in any remarkable way

from members of the same species caught in another locality, might

start by making measurements of the length of carapace or upper

shell for crabs of like sex in the two places and then proceed to

form frequency tables for each, setting out the frequency of crabs

for which the carapace length hes, say, between 5 and 6 millimetres,

the frequency with length between 6 and 7 millimetres, the frequency

with length between 7 and 8 millimetres, and so on. He would

then have in these tables some basis for comparing the specimens

caught in the two locaUties.

The three illustrations just used give three different types of

distribution corresponding to the three types of variable to which

attention has been drawn before. In the first, where the variable

or character observed is not measurable, doubt will sometimes

arise as to the appropriate class in which individuals should be

placed who seem to be on the border hne between dulness and

mediocrity or between mediocrity and brilliance, so that accurate

classification will greatly depend upon what is called the * personal

equation ' of the observer. The second illustration corresponds
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to the case where the variable changes not continuously but by

unit stages ; the choice of classes in such a case depends little

upon the observer unless the unit is very small compared to the

total range of variability ; for example, a tenement might either

definitely have two rooms or it might have three rooms, but it

clearly could not be put down as having 2J rooms or 2g- rooms :

in other words, the only natural classification is so many tenements

with two rooms, so many wdth three rooms, so many with four

rooms, and so on, though here too some confusion might arise

through failure to define clearly Avhat is ' a room.' In the third

typo, where we can conceive of the continuous variation of the

character under observation, there would be nothing surprising in

the appearance of any value of the variable between the lowest

and highest values observed ; the choice of suitable limits for the

several groups becomes therefore in this case rather a delicate

matter which requires careful judgment.

We shall begin the next chapter with some general remarks

upon the subject of classification and tabulation.



CHAPTER III

CLASSIFICATION AND TABULATION

No part of Statistics is of more importance than that which deals

with classification and tabulation, and it is the one part for which

no very precise rules can be given. A neat arrangement of ideas

in the mind, capacity to express them clearly, and patience are

indispensable, but experience alone will convince one of the extreme

care which must be exercised if blunders are to be avoided and

time is to be saved in the long run. This has to be emphasized

because most people, until they have tried and failed, imagine

that to arrange things in classes and in tables is a straightforward

proceeding involving no great thought or trouble.

Abundant matter of a statistical character is published periodi-

cally in Blue-books, Government Reports, Reports of Local Authori-

ties, Directors of Education, Medical Officers of Health, Chief

Constables, Employers' Associations, Trade Unions, Co-operative

Societies, etc., but it needs a trained intelligence as a rule to assimi-

late it and turn it to further advantage. The larger the scale upon

which any inquiry is made, the more valuable should the results

be, granted that equal accuracy is possible on the large as on the

small scale, but it is fairly clear that mistakes of various kinds

have also much more chance of creeping into a large work than into

a small one. To appreciate the various and numerous possibilities

of error when the scope is wide it is enough to read the introduc-

tions to the Registrar-General's Reports on the Census from decade

to decade ; this should also impress the student with the care that

is necessary if he proposes to use such material for the investigation

of some other problem. It may seem a comparatively simple task

to abstract two sets of figures from a Census Report, to establish

a one-to-one correspondence between them, and to make deductions

therefrom, but such figures when taken from their context will

sometimes lead to absolutely unsafe, if not false, conclusions. The

exact meaning and limitations of any data can only be properly

appreciated by one who has been closely in touch with the persons

who have collected them, and it is therefore important, before
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attempting to re-classify or re-tabulate any old statistics for a new

purpose, to read very carefully through the notes made by the

original compilers.

Perhaps the best advice that can be given to any one in this

connection is that he should embark upon some small inquiry

which will necessitate the collection of statistics for himself ; the

final result of his efforts may seem disappointing, but the experi-

ence he will gain will be invaluable. Ideas for such an inquiry will

occur to him if he reads through some authoritative work on social

questions, e.g. Beveridge's Unemployment, the decennial Census

Reports, or The Miiiority Report on the Poor Law (1905). But he

must read with an open and critical mind, questioning particularly

the foundation for all statements as to cause and effect which may
be made. A few simple hints may be useful as to method of

procedure.

When he thinks he has discovered some subject of interest which

would appear to deserve examination, it will be well to put it

down on paper in order to get it clearly defined, because a precise

written statement is Hkely to carry one further than a shadowy

idea somewhere at the back of the mind which is hardly formu-

lated at all. When the actual collection of statistics is begun

it will almost certainly be found that it is impossible to solve the

original problem contemplated ; but that need not prevent further

progress—what is important is that the limitations should be

exactly realized, and this will be impossible unless the original

problem is clearly presented side by side Avith the nearest solution

obtainable.

The problem stated, the next thing is to set down categorically

a number of questions, the answers to which are to be the raw

material for the solution of the given problem. For the answers

let us assume the inquirer is dependent upon the goodwill of others,

either employers, or trade union secretaries, or public officials.

The questions in that case must be clearly, concisely, and courteously

phrased, and must not be capable of more than one interpretation.

In numbcK they should be few and in character not inquisitorial

;

moreover, the replies should be obtainable without any great labour

on the part of the persons approached. Here again it will be found

that the questions first set down are not all satisfactory : one will

be too vague ; another, though clear enough, may involve a con-

siderable search through a mass of other matter before it can be

properly answered ; while to another it might be impossible to give

an exact reply in any case. Revision and amendment may there-
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fore be necessary in the light of the first replies received, and the

inquirer will begin to see at this stage how far the solution to his

original problem is really possible.

Wlien the bulk of the returns have come in they should be critically

examined one by one. A number will, for one reason or another,

be worthless, and they must be discarded ; as for the remainder,

if the questions were well chosen, the answers should not be difficult

to interpret and classify ; the most successful questions are those

to which a simple ' yes ' or ' no ' in reply gives all the information

required ; numerical answers are less easy to deal with, especially

if there is the least chance of misunderstanding on either side as

there often is, for example, in the case of observations which are

on the border line between two classes.

Tables should then be dra^vn up and the headings to the dinerent

columns of the tables should state concisely and exactly what the

figures below represent. So far as possible any one should be able

readily to grasp their general meaning without being obliged to

wade through a page or two of written explanation ; if any heading

cannot be clearly expressed in a few words it may be helped out

by a further note at the bottom of the page, but too many such

notes are to be avoided.

Finally, a summary should be made of the various conclusions

suggested by a study of the tables. Some of the points raised in

the course of the inquiry will perhaps be only incidental to the

main problem under discussion, but may still deserve a passing

reference. It will also be of advantage to follow up the summary
by any recommendations which can be fairly based on the con-

clusions obtained, when the problem is such that recommendations

are expedient, and, if ultimately the whole is of sufficient value to

be printed, emphasis can be introduced where necessary by suitable

variations in type.

For this part of the work considerable judgment is necessary

which can only be acquired by long training—a faculty to pick out

the real from the false and an eye to distinguish the important from

the trivial. A sense of numerical proportion too is desirable inci-

dentally ; one of our leading exponents on finance in a book deaHng

with the meaning of money uses a very interesting illustration which

is perhaps worth quoting here to show how even an acute mind

may on occasion prove itself curiously lacldng in such a sense.

He is seeking to show how the credit system of the country is built

upon a foundation composed of a little gold and a lot of paper

;

for this purpose he amalgamates together the balance-sheets of half
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a dozen big banks, and ijrovcs that their liabili,ties on current and

deposit account amounted at a certain date prior to 1914 to 249

million pounds, while the cash in hand and at the Bank of England

was 43 millions. Of the 43 millions he estimates that roughly

20 millions would be cash in the Bank of England, and further

that about two-thirds of this 20 millions would be represented really

by securities and not by gold. Hence he concludes that to support

this vast erection of credit there would only be £6,666,666 of actual

gold. Thus after talking throughout in millions the author closes

by giving his result true apparently to a pound !

Much may be learnt as to methods of classification and the

drawing up of tables by a careful study of those which appear in

various official reports, and a few such tables are reproduced in

the pages which follow.

Table (1). Condition as to Cleanliness of

School Children in Surrey.

Cleanliness. 5 years, 1908-12. 79,070 children inspected.

Above the average .

Average
Below average

Much below average

15-4 per cent.

76-5

7-6

0-5

Table (2). Condition as to Infectious Diseases op

School Children at Different Ages in Surrey (1913).

Age Groups inspected 5-6 8-9 13-14
Total at
All Ages.

Numbers inspected 5,191 5,151 4,902 15,304

Proportion who before inspec-

tion had suflEered from

—

per cent. per cent. per cent. per cent.

Diphtheria . 1-3 3-5 5-4 3-4

Scarlet fever 2-7 7-2 10-9 6-9

Measles 55-3 79-3 84-6 72-9

Whooping cough 41-8 56-4 54-3 50-9

German measles 2-9 51 7-5 51
Chicken pox 261 401 38-6 34-9

Mumps 10-6 220 29-8 20-7

No infectious diseases . 18-9 61 4-7
1

100
No definite information 3-3 2-2 0-9 2-2
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Table (3). Height of School Children according to

District, Age, and Sex (1913).

Age
Groups.

Boys. Girls.

Nos.
measured.

Average
Height

in inches.

Average
in c

Surrej'.

Height
ms.

England
and

"Wales.

Nos.
measured.

Average
Height

in inches.

Average Height
in cms.

England
Surrej-. and

Wales.

5-6

8-9

13-14

2724
2578
2529

41-4

47-8

57-0

105-2

121-4

144-8

103-4

120-4

142-4

2467
2573
2433

41-3

47-5

57-9

104-9

120-7

147-1

102-6

119-4

144-2

The first four are taken from the Annvxil Report of the School

Medical Officer for the County of Surrey, 1913. The first is an

example of single tabulation showing the distribution according to

cleanliness of children inspected in the elementary schools. The

second is an example of double tabulation, showing the distribu-

tion according to age of school children who at some period before

the date of inspection had suffered from certain infectious diseases.

The third is an example of quadruple tabulation, showing the dis-

tribution of school children according to height, district, sex, and

age. Thus in the first case we have one factor brought into reUef,

viz. cleanliness ; in the second case we have two factors, age and

disease ; in the third case we have four factors, height, district,

sex, and age.

When we have two or more factors tabulated together as in cases

(2) and (3), we may be sometimes led to discover a connection of

some kind, possibly causal, between them, and the search for such

a connection, or correlation as it is called, represents one very useful

purpose to Avhich tabulation may be jjut. Table (4) is an illustra-

tion of this. It is the result of certain measurements carried out in

order to discover the effect of employment out of school hours upon

the physical concHtion of boys. The particular factor examined as

the possible cause of evil in this comiection is lack of sleep, and

the figures given certainly seem to warrant a closer examination

into the matter.
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Table (4). Physical Condition of certain Boys according

TO Hours of Sleep Obtained.

No. of Hours
Sleep obtained.

No. of Boys
examined.

Average
Height in

inches.

Average
"Weight in

lbs.

Nutrition.

Percentage
above

average.

Percentage
average.

Percentage
below

average.

7 to 8 .

8 to 9 .

9 to 10 .

10 to 11 .

11 to 12 .

14

80
296

280

50

54-5

55-4

56-4

57-9

59.0

71-3

73-9

79-3

83-2

87-0

71
101
15-3

22-8

220

35-8

65-9

64-5

66-5

68-0

57-1

240
20-2

10-7

100

Tables (5) and (6) are two illustrations of neat tables, containing

a large amount of information in a small space, set out in such a

form that the eye can easily take it in—and that is the main purpose

of tabulation. These examples are selected from the Sixteenth

Abstract of Labour Statistics of the United Kingdom, Cd. 7131.

In Table (6) note the classification of age groups : it is not ' 5 to

10 years,' ' 10 to 15 years,' and so on, but ' 5 and under 10 years,'

' 10 and under 15 years,' and so on. This removes difficulties at

the border lines between two classes ; the difficulties are not com-

pletely removed, however, unless there is some understanding as

to what shall constitute under any particular age. Shall it be six

months under, or one day under, or one hour under ? This sort

of ambiguity has more importance in some cases than in others.

Suppose, for example, we were classifying men according to their

height : a group of the typo ' 60 inches and under 62 inches,'

assuming that measurements were made to the nearest half-inch,

would really include all men who were '

59f inches and under

61 1 inches '
; because one who measured anything from 59| in.

to 60J in., being nearer to 60 in. than to 59| in. measuring to

the nearest half-inch, would be registered as 60 in. in height, while

one who measured anything from 61| in. to 62J in., being nearer

to 62 in. than to 61 1 in., would be registered as 62 in. in height.

Another point to be noted is that in general people making

returns seem to have a psychological weakness for round figures,

so that a man in the neighbourhood of 40 years of age, for example,

is apt to record himself as actually 40 although he may really
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Table (5). Classification of Overcrowded Tenements—*

England and Wales (1911).

Urban Districts. Rural Districts. Total.

Occupauts
thereof.

Occupants
thereof.

Occupants
thereof.

Tenements
WITH

No. of
Over-

crowded
Tene-
ments.

No. of
Over-

crowded
Tene-
ments.

No. of
Over-

crowded
Tene-
ments.No.

Per-
cent-
age of
total

No.

Per-
cent-
age of
total

No.

Per-
cent-
age of
total

popu-
lation.

0-7

2-5

3-0

2-2

popu-
lation.

popu-
lation.

0-6

2-2

2-8

2-2

1 room .

2 rooms .

3 rooms .

4 rooms .

56,290
119,69.5

107,892
64,470

206,022
712,613
847,937
624,747

1,545
15,397
22,380
17,341

5,748
91,458

175,988

167,969

0-1

1-2

2-2

2-1

57,835
135,092
130,272
81,811

211,770
804,071

1,023,925
792,716

5 or more
rooms .

1

21,200 251,405 0-9 4,700 55,585 0-7 25,900 306,990 0-8

Table (6). Population grouped according to Age—
England and Wales (1911).

males.

Age Groups.

Uruan Districts. Rural Districts. All Districts.

Number. Percentage. Number. Percentage. Number. Percentage.

Under 5 years
5 and under 10 vears
10 „ 15 „
15 „ 20 „
20 ,, 30 „
30 „ 40 ,,

40 ,, 50 „
50 „ 60 „
60 „ 70 „
70 and upwards

1,517,432
1,431,900

1,341,586
1,267,500
2,332,135
2,094,934
1,-556,818

1,042,868
612,741
296,240

11-3]
10-6 1 ^ „

9-9 r ^^

9-4

)

17-3^
1.5-5 144-4

ll-OJ

7-71
4-5 U4-4
2-2j

418,681
415,395
400,045
387,395
626,300
542,370
444,360
333,308
2.30,306

147,228

10-6^

10-3 P^
^

9-8J
15-9^

13-7 HO-9
ii-sj

8-4^

. 5-8yi7-9

3-7J

1,936,113
1,847.295
1,747,631
1,654,895
2,958,4.35

2,637,304
2,001,178
1,.376. 236
843,047
443,474

ii-n
10-0 Li .9
10-0

1

^^ -

9-5j

17-0^
15-1 U3-6
ll-oj
7-9-1

4-8 } 15-2

2-5 j

Total 13,494,100 1000 3,951,448 100-0 17,445,608 100-0

* For the purpose of the Census Reports 'ordinary tenements which have more
than two occupants per room, bedrooms and sitting-rooms included,' are considered
overcrowded.]
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be 39 or 41 years old. To diminish the error arising from this fact

it is usual, when not otherwise inconvenient, to fix the centres

of the class-intervals at round figures : e.g. to take ' 15 and under

25 years,' ' 25 and under 35 years,' etc., in preference to * 20 and

under 30 years,' ' 30 and under 40 years,' etc. Where there is

any known bias in the data, as, for instance, in the familiar case

of certain women who consistently register themselves as younger

than they really are, a correction can be made in the final figures.

In any frequency distribution where we wish to group a number

of observations according to the magnitude of some common
variable, as in Table (6) a number of males grouped according to

age, the question arises
—

' How many grouf)s should there be ?
'

With tliis question is involved also the size of the corresponding

class-interval, and this should be so large that, with possible excep-

tions at either extremity of the table, there are a fair proportion of

observations to each class or group ; and, contrariwise, it should

be so small that all the observations in any one group may be

treated practically as if they were located at the centre of the group

so far as the variable in question is concerned, e.g. it should be

possible to treat males recorded in class ' 50 and under 60 years,'

where the interval is 10 3^ears, as if they were all of age 55 years. It

will be found in general that a number of groups somewhere in the

neighbourhood of 20 is the most satisfactory, granted that the

number of observations is reasonably large, although in some cases

it is impossible to split up the unit of class-interval, and we are

obHged to be satisfied wdth a smaller number of groups on this

account : Table (5) is a case in point where we are tied down to

one room as the class-interval. In Table (6) the class-interval

varies, being only 5 years at first, and afterwards 10 years, but

as a rule the labour of calculation of the different statistical constants

we require is considerably simplified if it is possible to keej) the

size of the class-interval the same for each group.
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AVERAGES

Common Average or Arithmetic Mean. Let us consider one of the

commonest meanings of the term average. If a train travels a

distance of 180 miles in 3 hours we say that it has been moving

at 60 miles an hour. By this we do not mean that its speed is

always 60 m/h, never more, never less, but that if it had moved
always at that uniform speed it would have accomplished its

journey in exactly the same time. As a matter of fact, during

some instants it may have been moving at a much slower rate

than 60 m/h, but, if so, it must have made up for this slackness

by travelling at a much faster rate than 60 m/h during other

instants, so that on the whole a balance was effected, and, as we

say, the speed averaged out at 60 m/h.

Again, suppose the wages of three men are : A, 27s. a week
;

B, ISs. a week ; C, 30s. a week. We should say that the average

wage of the three was equivalent to

|(27+18+30)s.= 2os. a week.

In other words, if A, B, and C were all under the same employer,

and if, instead of paying them different amounts, he wanted to

pay them all equally, he would have to give each man 25s. a week,

assuming that his total wages biU was to remain unaltered. This

method of measurement gives what is kno\\Ti as the arithmetic

mean, or, more simply, the mean.

Once more, in discussing the state of the labour market as regards

different trades, when we wish to compare one with another, it is

not the actual numbers unemployed in each trade that are quoted,

but these numbers expressed as percentages of the total numbers

employable in each trade.

In each of these three cases we reduce our observations or

measurements to a sort of common denominator, so that they may be

mentally compared or contrasted more readily with other observa-

tions of a similar character. Thus we have in mind a certain mean
22
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train speed per hour, or mean wage per week, or mean percentage

out of work, as the case may be.

An average then in general we may regard as one of a class

of statistical constants (others of which we are to meet later) which

concisely label a set of observations or measurements pertaining

to a common family. It is designed to describe the family type

more nearly than is possible by observing any chance member, and in

value it should therefore come somewhere near the middle of the

family group, so that if the individual members of the family

chance to be equal each to each in respect to the organ or character

observed it should have the same value as they have. This consti-

tutes a test for the validity of any fornmla giving the average of a

set of observations : e.g. we might, if we wish, define the average

of three numbers, p, q, r to be, not \{'p-\-q-\-r) but

for (1) this formula, too, can be shoA\Ti to give a number intermediate

in value between the greatest and least of the numbers p, q, r
;

also (2) if we put p=q=r=k (say), the formula reduces to

Clearly the range of choice for the definition of an average is

infinite, though only a few definitions give averages which have

proved their utility and come into general use. Of these the most

important is the common mean already introduced, with its ex-

tension, the weighted mean, but at least two others deserve special

consideration, the median and the mode.

Median. In any observed distribution if all the individuals

can be arranged in order of magnitude of the character or organ

observed, which may be conveniently done when they are not very

numerous, the median organ or character will be that pertaining to

the individual half-way along the series, so that there are in general

an equal number of individuals above and below the median.

For instance, if seven boys of different heights be placed to stand in

a row, the tallest first, the next tallest next, and so on, the median

height is the height of the fourth boy from either end. If there

are an even number of boys, say eight, it would be natural to take

as median the height midway between that of the fourth and that

of the fifth boy.

When the items are numerous they are frequently grouped into

classes, as we have seen, such that all in the same class are reckoned
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to have some value lying between the extreme limits of that class.

We should then, as before, halve the total number of observations

to fix the particular individual which defines the median organ or

character. This would enable us to pick out the group in which

the median lies, and on reference to the original record of observa-

tions, assuming it was at hand, it would be a simple matter to

identify the median.

If the original record be not available, however, it will be neces-

sary to jDroceed to get the best value we can for the median in some

other way. Consider, for example. Table (7), showing the distribu-

tion of marks obtained by 514 candidates in a certain examination.

We begin by rearranging the data in the manner shown below

Table (7). Now in accordance with the definition the median in

marks should, strictly speaking, be midway between the marks

assigned to the 257th candidate and the marks assigned to the

258th candidate : in fact, the marks corresponding to candidate

number 257-5, if it were possible for such a candidate to exist.

But we are ignorant so far as Table (7) goes of the marks gained

by either the 257th or the 258th candidate, though it is possible,

by the simple proportional process known as ' interpolation,' to

calculate approximately the marks we require. We think of all

the candidates as forming an ordered sequence, ranged one after

the other according to their marks just like the boys of different

heights, and the table shows that in this mental picture

the 231st candidate gets approximately 30 marks, while

„ 318th „ „ „ 35 „

Hence candidate number 257-5, if one existed, ought to get a

number of marks somewhere between 30 and 35. But, in tliis

neighbourhood of the sequence,

a difference of (318-231) candidates corresponds to a difference

of 5 marks, therefore

a difference of (257-5-231) candidates corresponds to a difference

of (.^Vx 26-5) marks. '^

Thus the marks obtained by candidate number 257'5 are ap-

proximately = 30+ -ir X 26-5

=31-523,

and this may be taken as the median.

On examining the actual marks-sheet it v/as found that 252

candidates obtained 31 marks or less, and 273 candidates obtained



/•«.

AVERAGES 25

32 marks or less, so that the real median was 32, because this was

the number of marks gained by both the 257th and the 258th

candidates. The number 31-523 found above, however, would be

a good approximation to take for the median when all the informa-

tion at our disposal was that showTi in Table (7).

Table (7). Makks obtained by 514 Candidates in a

CERTAIN Examination.

Marks Obtained.
No. of

Candidates.
Marks Obtained.

No. of

Candidates.

1 to5
6 to 10

11 to 15

16 to 20

21 to 25

26 to 30
31 to 35

5

9

28

49

58

82
'

87

36 to 40
41 to 45

46 to 50

51 to 55

56 to 60

61 to 65

79

50
37

21

6

3

Total 514

The table is to be read as follows :

—

5 candidates obtained 1, 2, 3, 4, or 5 marks,

9 6, 7, 8, 9, or 10 and so on.

By straightforward addition it can evidently be rearranged so

as to read thus :

—

5 candidates obtained not more than 5 marks.

14

42

91

149

231

318

397

447

484

505

511

514

10

15

20

25

30

35

40

45

50

55

60

65
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It will be noted that in calculating the median no use is made of

the marks of any of the candidates except those in the two groups

in the immediate neighbourhood of the median, and it is one of

the great advantages of this average that it can be found when an

exact knowledge of the characters of the more extreme individuals

in the series is not in our possession, and even wtien their measure-

ment is impossible : it is enough if they can be roughly located.

The arithmetic mean on the other hand is often unduly influenced

by abnormal individuals which are not really typical of the popula-

tion in which they appear.

Mode. If we measure or observe some organ or character for

each individual in a given population, the mode, as its name sug-

gests, is simply the organ or character of most fashionable or most

frequent size. A large draper, for example, will have collars of

several different shajies and sizes in his shop, but the fashionable

shape and the predominant size correspond to the mode : it is the

mode that sells most readily, and the intelligent draper will always

have it in stock. Again, in Table (2), the disease mode or fashion-

able disease among certain school children inspected in Surrey in

1913 was measles, for a greater percentage of children had suffered

from measles than from any other of the diseases recorded.

Now when the variable in which we are interested is ' discrete,'

that is, when it changes by unit steps, leading to classes like ' tene-

ments with 1 room,' ' tenements with 2 rooms,' ' tenements with

3 rooms,' and so on, it is an easy matter to pick out the class of

greatest frequency : thus, in Table (5) there are more overcrowded

tenements with 2 rooms than with any other number of rooms

in the urban districts, so that 2 is the mode so far as this character

(number of rooms) is concerned, whereas in the rural districts 3 is

the mode, for there are more overcrowded tenements with 3 rooms

than with any other number. There may be ambiguity, however,

in determining the mode in this way for a grouped frequency dis-

tribution when we are dealing with an organ or character subject

to ' continuous variation.' To cover such cases the modal value

has been defined as that value for which the frequency per unit

variation of the organ or character is a maximum. The precise

significance of this Avording will only be appreciated after discussmg

frequency curves : at present it must suffice to give a practical

illustration of how the ambiguity arises and calls for some more

refined treatment.

For this purpose turn again to the examination marks in Table (7),
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from which it appears that the mode, if it is to be the marks obtained

by the greatest number of candidates, should he in the group

(31 to 35), since there are 87 candidates ^vith marks between these

Hmits, and this number exceeds that in any other group. But

how are we to decide the exact point in the interval (31 to 35) which

is to correspond to the mode ? Shall it be 33 ? We might say

' yes ' if the distribution were perfectly symmetrical on either side

of the (31 to 35) group, but if we examine the neighbouring groups

we see that the balance leans rather more heavily to the (26 to 30)

group with a frequency of 82 than to the (36 to 40) group with a

frequency of 79, and we might allow for this by interpolating in

some way—ignoring, of course, any errors which may occur in the

frequencies themselves owing to the observations being generally

limited in number. But the pull in the direction of lower marks

becomes still more pronounced to our minds when we contrast

also the frequencies in the next groups on either side, namely

58 and 50. So we might go on until the influence of the whole

field of observations comes into action.

Now it so happened that in this particular case the original

marks-sheet was to be seen, and a regrouping of the candidates as

in Table (8) makes it clear that the value found in this way for the

mode may be artificially displaced sometimes to a serious extent

by the particular method of grouping adopted. Thus, according

to this new arrangement, the mode would seem to lie in the interval

(28 to 32), the mid-value of which differs materially from 33, the

mid-value of the previous maximum frequency group.

Table (8). Marks obtained by 514 Candidates in a

CERTAIN Examination (Alternative Grouping).

Marks Obtained.
No. of

Candidates.
Marks Obtained.

No. of

Candidates.

3 to 7

8 to 12

13 to 17

18 to 22

23 to 27

28 to 32

33 to 37

10

17

35

56
47

108

74

38 to 42

43 to 47

48 to 52

53 to 57

58 to 62

63 to 67

73

45
31

12

3

3

Total 514
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[It should be observed that while an alteration of the grouping

may also affect the median, it does not affect it nearly to the same

extent : e.g. the median determined from Table (8) is 31-3, which

differs little from 31-5 the value obtained by the first grouping.]

If, again, we combine the results of our two groupings to find

the mode we might be tempted to conclude that it lies somewhere

between the limits 31 and 32, but on examining the original records

it was discovered that the real mode was 28. The frequency

distribution of candidates in this neighbourhood was in fact very

interesting ; it ran as follows :

—

Number of candidates who obtained 25 marks=14
26 „ -=10

27 , , = 6

28 , =33
29 , , =17
30 , , =16

The explanation of this peculiar distribution seemed to be that

28 marks were required for a candidate to pass, and apparently as

many candidates as possible were pushed over the pass line : if,

on the first marking, a candidate was found to want only one mark

to pass, the examiner presumably looked through his paper again

and did his best to find an answer which by kindly treatment

might be granted an extra mark. The effect of this leniency was

ultimately to leave only 6 candidates in the division immediately

below the pass line, and to swell the number immediately above

to 33, which thus made 28 easUy the ' most fashionable ' mark of

any, the next largest group of candidates being only 21. It will

be observed that even a candidate who wanted 2 marks to pass

was treated in the same tolerant fashion, although it is not so

easy, of course, for a conscientious examiner to discover two extra

marks as it is to discover one ; and if the candidate is 3 marks

below the pass line it is still harder to give him the necessary lift

to carry him over. Thus in the final list we fimd more condidates

with 26 marks than with 27, and stUl more with 25 than with 26.

If the above diagnosis is correct, and all marks-sheets tell the same

tale, who shall again say that examiners do not temper justice with

mercy ?

This example has illustrated fairly clearly the difficulty of fixing

the mode with any great precision by mere inspection when the

individuals are arranged in groups, the value of the variable under

discussion lying between prescribed limits for each group. While
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it is possible to get a rough approximation to its value in this way,

we conclude that for a really satisfactory determination we require

some method which makes use of the whole distribution, as in the

determination of the mean, and not merely of the portion in the

supposed neighbourhood of the mode. This must be left to a later

chapter ; we shall only point out before passing on that there

may sometimes be more than one mode in a given frequency dis-

tribution just as there may be more than one fashionable type of

collar which it is expedient for the draper to stock in large quan-

tities. The second grouping in the examination example suggests

such a possibilitj'', for it will be noticed that the frequencies of

candidates do not rise steadily to a single maximum at 108 for

class (28 to 32), and then fall steadily : there is a previous rise and

fall in the neighbourhood of class (18 to 22).

Weighted Mean. Let us suppose a farmer employs for the

harvest 5 men, 3 women, and 4 bo3'S. In estimating the amount
of work they can do in a given time it is clear that in general a

woman or boy cannot be reckoned as equal to a man. He must

therefore decide what ' weight ' must be given to each in proportion

to a man. If a woman's work be taken, for example, to be three-

quarters as effective and a boy's work to be half as effective as

that of a man, we have as the appropriate proportional weights

1 : f :
1 or 4 : 3 : 2.

Hence 5 men, 3 women, and 4 boys would on the average be equiva-

lent in output to

(5+3xf+4x^) men

4x5+3x3+2x4= men

=9i men.

An average of this type is called a weighted mean, 1, f, and

I being the weights, because they tell us what weight to give to

each separate worker in calculating the average.

Let us consider the effect such weighting has in general upon a

mean, and for this purpose we shall test it on a set of index numbers

measuring rents in certain groups of to^Tis in 1912, as given in a

Report on the Cost of Living of the Working Classes issued by the

Board of Trade (Cd. 6955).



80 STATISTICS

Table (9). Mean Index Numbers of Rents for certain

Geographical Groups of Towns in 1912 (with reference

TO Middle Zone of London as standard — 100).

(1) (2) (3) (4) (5) (6)

Geographical Group. Rents.

No. of

Towns
included
in the
Group.

Each
Group
counting
as 1.

Arbitrary
Weights.

Approxi-
mate sub-
multiples
of Nos. in

previous
column.

Northern Counties and Cleve-

land .... 660 9 27 3

Yorkshire (except Cleveland)

Lancashire and Cheshire

58-5

56-9

10

17

54

45 I
Midlands .... 52-3 14 125 14

Eastern and East Midland Cos. 53-4 7 63 7

Southern Counties 63-7 10 14 2

Wales and Monmouth . 64-8 4 22 2

Scotland .... 62-0 10 178 20
Ireland .... 51-7 6 55 6

Average •• 58-4 58-8 57-6 57-6

The first mean in the above table, 58-4, is obtained by multipl}^-

ing (or weighting) the mean rent of each geographical group by the

number of towns in the group, given in col. (3), adding the numbers

so obtained, and dividing the total by the total number of towns,

thus :

—

9(66-0)+ 10(58-5)+ • • • +6(51-7)

9 + 10 + + 6

This is simply the arithmetic mean treating each town as unit.

The second mean, 58-8, is obtained by adding the mean rents of

all the groups and dividing by the total number of groups, thus :

—

66-0+58-5- +51-7

1 + 1 + + 1

This is the arithmetic mean treating each geographical group as

unit.

The third mean, 57-6, is obtained by multipl3dng, or weighting,

the mean rent of each group by a perfectly arbitrary number given

in col. (5) ; the numbers selected were taken quite at random from
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another column of figures in another Blue-book, and had no coa-

nection whatever with the subject of rents ; this gives :

—

27(66-0)+54(58-5)+ . . . +55(51-7)

27 + 54 + . . . + 55^"

The last mean, 57-6, is obtained by choosing as weights any

numbers (and for simplicity we choose the smallest) as in col. (6)

which are very roughly proportional to the arbitrary weights used

in the last instance ; we thus get :

—

3(66-0)+6(58-5)+ . . . +6(51-7)

3~T 6 + . . . + 6~'

Now the first of these means is clearlj"^ the most satisfactory, since

it is the result of very properly weighting the mean rent of each

group of towns accordhig to the number of towns the group con-

tains. But the second result shows that if we are ignorant of the

number of the towns in each group we shall not be very far out in

our calculation if we treat them all as of equal importance, and find

the simple arithmetic mean of the mean rents in the nine groups.

We can even go further, for we find, from the third and fourth results,

that by weighting the mean rents in the various groups on quite a

random basis, the mean we get still does not differ very greatly from

the best value first found.

The important princi2:>le of which the above example is an illus-

tration is perfectly general, and may be stated as follows : If the

total number of measurements or observations be not very small,

and if the resulting values of the organ or character measured

(rent in our case) be not very unequal, any reasonable selection of

multipliers or weights (as, for instance, the first two adopted above)

will give means which differ from one another by but little ; and

even an apparently unreasonable selection of multipliers (as, for

instance, the third adopted above), assuming they are not so

wildly chosen as to give any particular group a very unfair weight

in comparison with the others, will not throw the mean out badly.

Further, in place of a set of large multipHers we may substitute

small numbers which are roughly proportional to them (as we have

done in the fourth case above), and the mean will again be very

little affected. [See Appendix, Note 2.]



CHAPTER V

AVERAGES {continued)

Applications of Weighted Mean. In determining the weighted mean
of a set of obs(}rvations it is usual, of course, to weight each observa-

tion according to its importance, though what number should be

chosen as a measure of its importance may sometimes be a matter

of doubt. It is not a very difficult matter to decide when we
wish, for example, to compare birth, marriage, or death rates in

two districts, if we know how the constitution of the population

in the one district differs from that in the other, for the weighting

in each of these cases must be in proportion to the population

concerned, and it is too important to ignore.

Death rate, crude and corrected. Imagine a city in which the

total number of deaths in a certain year is N out of a population

numbering P.

The ordinary or crude death rate for that city wiU then be

N— X 1000, by defuiition.

Now this number N may be analysed according to the ages of

the people who have died ; let us suj^pose it is made up of

Wj people between limits and less than 5 years of age,

'^2 '» !> )> ^ " ^^ »»

*^3 " " " 1^ >' ^^ »>

and so on, where

^1+ ^2+^3+ ... =N.

Again the number P may be analysed accorcUng to the ages of

the people who compose the total population, giving, saj^

jp^ of the population between limits and less than 5 years of age,

Vz J) )) >> >> 5 ,, 15 ,,

Vz " " " '> 1" " ^^ "

and so on, where

Vi-\-Vz-\-Pz+ • • =P-



AVERAGES 33

Thus we may write for the crude death rate

N
D=--XlOOO

P

_W,+ W2+ W3+
X 1000

=*Lii000+*^1000+-n000+
. . ;

=^/!!i
1000V^f-^ loooV^f"^ loooV . . .

= (Pl<^l+^2^2+^3^34- • • O/P.

where d^is the death rate between limits and less than 5 years of age,

^2 »> " " ^ '» *". >>

and so on.

Now if we compare this expression with the corresponding one for

another city, say,

it is quite conceivable that the death rates in the various age groups

might be equal

—

d^=(i , d ^d , d =d . . .
I l' i! 2' .! 3

and yet D might exceed D' because in the first city there are a

greater proportion of infants or old people, on which classes the

hand of death falls heaviest, that is, because the ^'s or weights

wliich multiply the biggest d's are greater in the first case than in

the second. But so long as the d's in the two cities are equal, age

group by age group, it would be reasonable to regard the cities as

equally healthy, or unhealthy as the case might be, and therefore

to insure a fair comparison it is usual in the Reports of the Registrar-

General to give a corrected death rate in place of the crude death

rate defined above.

This is done by weighting the death rate for each age group, not

in proportion to the actual number of persons in that group in

the city itself, but in proportion to the corresponding number in

C
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the country at large. Thus, if we denote the proportion of the

population, Q,

between limits and less than 5 in the country at large by QilQ,

„ 15 „ 25 „ „ „ qJQ,

and so on, we get as the corrected death rate

a form wliich has the effect of making the results agree in two

cities which have equal d's throughout.

A similar method of correction is clearly applicable in consider-

ing the incidence of the death rate when we are concerned not

with a difference of district but with a difference of sex, occupation,

religious profession, wage-earning capacity, or any other well-

defined character. Further, it may be used also in comparing birth

rates, marriage rates, heights, weights, chest measurements, or any

similar attributes, when it is necessary to refer the observations

or measurements to a standard population in order to avoid

complications due to age variation.

There is another method of correction, equally general in applica-

tion, which is useful when the death rates in the various age groups

are not laiown. In this case D, the crude death rate for the whole

population of the district is known, alsopJ'P, pJP, P3/P, . • the

proportions of the population between the various age limits, but

d^, do, d^ . . . are supposed unknown.

Now if the population in the country as a whole were the same in

corresponding age groups as it is in the district under consideration,

we should get as the death rate for the whole country

where 8^, S,, S3 • • • are the death rates in the various age groups in

the country at large, and these would in practice as a rule be known.

The actual death rate for the whole country is, however,

{qA+Q2K+Qzh+ • • • )/Q.

where g'j/Q, q^lQ, 33/Q • • • denote, as before, the real proportions

of the population in the various age groups in the country at large.

We take as the corrected death rate required for the district a

number bearing to the crude death rate the same ratio as

i(lA-\-Q2^2+ ' • O/Q bears to {PiSi+jy-^S^-^ . . .)/P.
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Hence we have

corrected death rate qi^i-hQi^^-^-

35

D PA+P2^2+
X Q*

Index Numbers to compare Household Budgets. Another highly

important illustration of a weighted mean occurs in the search for a

satisfactory measure of the change in the cost of living from year

to year. We have already introduced the subject of variation in

wholesale jirices, and we have seen that Sauerbeck, in forming his

index numbers, treats as one each of the forty-five commodities

he uses to measure this variation : the observations, that is to

say, are not weighted.

But, confining our attention to food alone, supposing we have

five items, such as bacon, bread, tea, sugar, milk, for Avhich the

index numbers of prices at two different dates are :

—

Bacon. Bread. Tea. Sugar. Milk.

First date

Second date

100

117

100

95

100

94
100

102

100

109

Is it really right to treat each of these items as of equal importance

with the rest, or ought we to regard bread and tea, say, as of more

weight than bacon, and count bread perhaps five times and tea

three times wliile counting bacon only once ? It is clear that, in

order to select a reasonable set of multipliers in this case, we should

need to know the standard of living of the class of people under

consideration, and how much in the aggregate they spend upon

bacon and how much upon bread, etc.

A partial answer to these questions can be obtained by maldng

a collection of household budgets as was done, for example, by two

Government Committees which recently reported (1918-19) on the

Cost of Living among the Urban and the Agricultural Working Classes

respectively. If the number of commodities employed is large,

even an arbitrary set of multipliers, as we have indicated, will not

displace the mean any great distance from the value when reason-

able weights are chosen, but unfortunately in collecting such house-

hold budgets we are confined to the comparatively limited variety

of food-stuffs which are in general use.

Different principles may be followed in making the comparison
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between one year and another which may be illustrated by a few

figures from the Urban Classes Report (1918) :

—

Table (10). Household Budgets showing Prices of each Com-

modity AND Quantities Purchased at Two Different

Dates by Typical Family.

Commodity.

First year (1914). Second year (1918).

Xy «i a-.i n.i

Price (pence No. of lb. Price (pence Xo. of lb.

per lb). bought. per lb.) bought.

Sugar 2-2 5-9 7-07 2-83

Tea . 21-3 0-68 33-3 0-57

Potatoes 0-7 15-6 1-25 200

Let a*i be the price, in pence per unit, of any one commorlity

at the first date, and let n^ be the number of units of this commodity

bought per week by a typical family {n may be estimated in different

ways, e.g. (1) by dividing the total number of units bought by

all families by the total number of those famihes, or (2) by ranging

the different amounts bought by different families in order of

magnitude and picking out the median amount, or (3) by choosing

the mode, i.e. the amount most commonly purchased). Also let x^

be the price, in pence per unit, of the same commodity at the second

date, and let Wg be the number of units of the commodity then

bought per week by the typical family estimated in the same way
as before.

The actual expenditure, measured in pence, at the two dates

will then be

E{x{n,^) and ^{x^n^)

respectively, where Z{x^n^) simply denotes the sum of expressions

like [x^n^ for all the commodities recorded and ^'(a'gWg) denotes the

sum of expressions like {x.^n.^ for all the commodities recorded,

H, the old English S, being a well-known conventional abbreviation

for ' Sum of expressions like.' Thus, with the numbers in Table (10),

we should have

2'(a:iWi)=(2-2)(5-9)+(21-3)(0-68)+(0-7)(15-6)+ . . .

i:(a:2W2)=(7-07)(2-83)+(33-3)(0-57)+(l-25)(20-0)+ . . .
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Taking 100 as the index number to represent expenditure at the

first date, the index number measuring expenditure at the second

date may be formed in any of the following different ways,* which

as a rule, of coiu-se, lead to different results :

—

(1) l002:ix,n,)lUix,n,)

;

(2) I00i:{x^n,)/i:{x,7i,) or lOOUix-.n^yZix^n^) ;

(3) l00U{Xjn2)l2:{Xini) or 100i;(.r2W2)/Z'(a:2Wi).

The first of these expressions compares the actual expenditure at

the second date to that at the first date.

The next two expressions take into account directly only the

change in prices ; they compare, not actual expenditures but, the

expenditures at the two dates as they would be if the amounts

purchased at the two dates were the same : the first supposing

these amounts to equal those actually bought at the first date,

and the second supposing them to equal those actually bought

at the second date.

The last two expressions, on the other hand, take into account

directly only the change in amounts pui'chased ; they compare

the expenditures at the two dates as they would be if the prices

ruling at the two dates were the same : the first supposing these

prices to equal those actually charged at the first date, and the

second supposing them to equal those actually charged at the

second date.

The particular method of weighting adopted must naturally

de|3end upon the circumstances of the period under discussion

and the nature of the inquiry one is making ; it is a nice question

to decide how far emphasis should be laid upon the old standard

of life (measured by food, lighting, rent, recreation, etc.) with the

expense required to maintain it, and upon the new standard of life

and the cost necessary to reach it.

It may be useful here to summarize a few of the questions of

interest which present themselves in connection with the formation

of index numbers of prices designed to measure changes in the

value of money in general without reference to any particular class

of the community :

—

1. What years should be selected in fixing our standard prices ?

2. What commodities should be chosen as a basis for our

average ?

[* See also The Measurement of Changes in the Cost of Living, by A. L. Bowie}', Sc.D.,

in the Journal of the Royal Statistical Socictij, May 1919, for a more complete dis-

cussion of the subject.]
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3. What weight should be given to each commodity in relation

to the rest ?

4. How should the prices of the several commodities be deter-

mined, bearing in mind that ' price ' itself frequently varies from

place to place ?

5. Finally, how should these prices be combined to give the

average required ? Should we use the simple arithmetic mean, the

geometric mean [see Appendix, Note 3], the median, or some other

measure ?

While we are not prepared to attempt to answer these questions

fully, seemg that authorities are not altogether agreed as to what

the answers should be, one or two points may be worth noting.

Generally speaking we may say that :

—

1. The 3'ears selected m fixing our standard prices should be

years in which economic conditions were normal rather than

abnormal.

2. The commodities chosen should be articles of general con-

sumption, and as wide a field as possible should be covered in their

choice.

3. Many consider that little is gained by weighting, but, if

weights are introduced, the greater the importance of any com-

modity in relation to the rest, judged for example by the relative

quantity consumed, the greater should be the weight assigned

to it.

4. The practical difficulty of assessing retail prices when they

are uncontrolled compels us in general to fall back upon whole-

sale quotations, on wliich some light may be thro^ra by keeping

under observation the important markets for the sale of each

commodity.

5. The average commonly used is the simple arithmetic or the

weighted mean, though arguments can be adduced in favom- of

other averages such as the median.

Leaving index numbers now on one side and returnuig to the

general subject of averages, we may remark that the question

which average is correct in any given case, the mean (weighted or

otherwise), the median, or the mode, does not arise : no one average

is more correct than another, because they are all entirely con-

ventional and represent different ideas ; they correspond in fact

to so many different ways of summing up a set of observations or

measurements in a single numerical statement, and the real question
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to determine is which statement, which kind of average, brings the

set of observations before us to the best focus.

For this purpose one average will clearly be best in one case and

another in another, but it may be stated without hesitation that

the ai'ithmetic mean is certainly the most useful of the three and

it is the most frequently used. Other averages have been sug-

gested, such as the geometriG and the harmonic means [see Appendix,

Note 3] familiar to students of Algebra, as suitable in special

classes of problems.*

In a reasoyiably symmetrical distribution of observations, one in

which the variables of medium size arc the most frequent and the

frequency diminishes about equally on either side towards the

largest and the least of the variables, the values of the mean, the

median, and the mode will be found to lie all very close together
;

and a useful jsractical rule to remember is that the median comes

in general between the mean and the mode, the difference between the

mean and the mode being about three times the difference between the

mean and the median. This rule, for lack of a better, might be used

to determine the mode in suitable cases, or it might be used to test

the value found in some other way.

The general term ' average ' is frequently used when the par-

ticular denomination ' arithmetic mean ' is implied, but the context

will usually prevent misunderstanding.

In order to get a clear impression of the outstanding features

presented by the three chief averages discussed, let us go over them

once more in the case of marks awarded to a number of students

in a class. All three may be regarded as in a sense measures of

the standard reached by the class as a whole in the examination,

but the measures are made in different waj's :

—

1. The Arithmetic Mean is found by merely dividing the aggregate

marks of the class by the number of the students, and it gives the

marks earned by each student if we conceive them all to be of

equal merit.

2. The Median is found by ranging the students in order of merit

from top to bottom, and picking out the marks awarded to the one

who comes half-way down the list.

3. The Mode is the most fashionable number of marks, i.e. the

marks obtained by the greatest number of candidates.

The advantages and disadvantages of the three types may be

set out broadly .as follows, although the boundary lines must not

be too strictly drawn :

—

* See Note on p. 41.
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Mean. Median.
1

Mode. j

1

Easy to calculate when Easy to pick out when Not easy to determine

the values of the vari- the individuals can with precision, when
able can be summed be ranged in order the observations faU

and their number is according to the into groups of differ-

known. value or degree of ent ranges, without

the variable ob- fitting a frequency

served. curve to the distribu-

tion as a whole.

Well designed for alge- Unsuited for algebrai- Unsuited for algebrai-

braical manipulation, cal work. cal work.

as, for example, when
we wish to combine
different sets of obser-

vations [see Appendix,
Note 4, for two illus-

trations].

Affected sometimes too Determined merely by Unaffected by abnor-

much by abnormal in- its position in the mal indiAaduals, and
dividuals among the distribution, and its owes its importance

observations. actual value is thus to the fact that it is

quite unaffected by located in the region

abnormal individuals. where the frequency

is most dense.

The reader should test his grasp of the principles so far intro-

duced by applying them himself to a concrete case. For exami^le,

he might use the data in Table (11), with regard to wages earned

by certain women, taken from Tawney's Minimum Wages in the

Tailoring Trade, and based upon the 1906 Wages Census. Let him

begin by roughlj^ estimating the mean, the median, and the mode

from an inspection of the distribution. He might then proceed

to calculate the mean wage :

—

(1) taldng the actual frequencies given in the table
;

(2) taking simple sub-multiples of these frequencies, roughly one-

hundredth part of each : 2, 4, 6, 7, 9, 11, etc.
;

(3) assuming unit frequency in place of that given in the table for

each wage grouj).

Finally, he might determine the median and the mode in the

manner explained in the text, deducing the latter from the relation

(mean— mode)—3(mean— median).
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The results obtained should be

(1) 13-08S.
; (2) 13-lOs.

; (3) 15-59s.

Median=12o3s. : Mocle=ll-43s.

41

Table (11). Distribution of Wages of certain

Women Tailors.

(1) (2) (3) (4)

No. of "Women
j

No. of Women

Wages between limits
earning wages
as shown in

Wages between limits
eaniiiig wages
as shown in

Column (1). Column (3).

5s. and less than 6s. 180 16s. and less than 17s. 642

6s. , 7s. 384 17s. „ 18s. 453

7s. , 8s. 553 18s. „ 19s. 401

8s. , 9s. 690 19s. „ , 20s. 272

9s. , 10s. 900 20s. „ 21s. 251

10s. , lis. 1145 21s. „ , 22s. 138

lis. , 12s. 1201 22s. „ 23s. 124

12s. , 13s. 1138 23s. „ 24s. 64

13s. , 14s. 930 24s. „ 25s. 54

14s. , 15s. 885 25s. „ , 30s. 122

15s. , ' 16s. 790 ..

* [One important example of the use of the geometric mean is in the con-

struction of the Board of Trade Index Number of Wholesale Prices—see article

by A. W. Flux, C.B., M.A., in the Journal of the Royal Statistical Society,

March 1921.]



CHAPTER VI

DISPERSION OR VARIABILITY

Let us suppose that two men set out separately on walking tours

and that they walk as follows :

—

The total distance covered in six days, namely 150 miles, and

therefore also the mean rate of walking, 25 miles a day, are thus

exactly the same in both cases, but the disjJersio^i of the values of

the variable (the variable being in this instance the number of

miles walked per day) round about their mean value, the variability,

is different in the two cases. The greatest deviation from the

average in the fii'st case is five and in the second case it is ten miles.

Thus, besides knowing the average of a set of values of a variable

it is important to measure the dispersion of the distribution. Are

the observations crowded in a dense mass around the average,

or do they tail off above and below it, and to what extent ?

In other words, what is the variability from the average of the

distribution ?

Mean Deviation. Now we are not concerned here with the signs

of the separate deviations, with the question, that is, whether any

particular value of the variable lies above or below the average :
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it is only of their amount we wish to take cognizance, and perhaps

the most obvious Avay to measure the total variability and at the

same time to ignore the signs of the separate deviations from the

average is to add up these deviations, treating them all as signless,

and to divide the result by their total number. This gives what

is known as the mean deviation of the system of observations—it

is the ordinary arithmetic mean of the separate deviations, treated

as if they are all in the same direction, and, in measuring them, we
may use either the mean or the median as the average, but it

would seem preferable to take the latter because the mean deviation

is least when the median is chosen as the origin, or zero point, from

which the differences are measured. The proof of this fact will

be found in Note 6 in the Appendix, but we may readily test it in

a given case.

Let us adapt the ' walking ' illustration used above, slightly

extending the figures and making them unsymmetrical, i.e. of

unequal variability on either side of the average, so as to prevent

the median coinciding with the mean. We then have an amended

table setting out the number of miles walked b}^ a certain man on

successive days during, sa^^, a fortnight's tour, as follows :

—

Table (12). Number of Miles walked on Successive Days.

(1) (2) (3) (4) (5) (6) (7) (8)

No. of

(lays.

Miles
walked.

X
Deviation
from 25.

^1 r.
Deviation; j)^^-^j^„
|-- from 24.

Xi
Deviation
from 2G.

fx
[No. in

Col. (1 )] X
[No. in

Col. (3)].

M
[No. in

Col. (l)]x

[No. in

Col. (4)].

1

2

3

3

2

2

1

14

10

15

20

25

30
35

40

15

10

5

5

10

15

14-64

9-64

4-64

0-36

5-36

10-36

15-36

14

9

4

1

6

11

16

16

11

6

1

4
9

14

15

20
15

10

20
15

14-64

19-28

13-92

1-08

10-72

20-72

15-36

•• •• 95 95-72

The first two columns show that 10 miles was the distance walked

on the first day, 15 miles on each of the next two days, 20 miles

on each of the next three days, and so on until the last day, when

40 miles was the distance walked.
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The median in this case, being the number of miles walked on

the middle day when the daj's are ranged in order of mileage from

the least to the greatest, is 25, for this is the distance covered on

both the seventh and the eighth days which come half-way along

the series.

Col. (3) shows the deviations from the median, 25, of the distances

covered each day as recorded in col. (2), and col. (7) enables us to

sum these deviations when each is multiplied by the number of

days to which it corresponds, since these numbers, given in col. (1),

show how many times each deviation is repeated. Hence the mean

deviation, regardless of sign, measured from the median

-[(Ixl5)+(2xl0)+(3x5)+(2x5)+(2xl0)+(lxl5)]/14
= (15+20+15+10+20+15)/14
=95/14
=6-79 miles.

We may compare this with the corresponding deviations measured

from (1) the arithmetic mean, (2) the number 24, and (3) the

number 26 as origin respectively.

1. The arithmetic mean of the distribution is obtained at once

by multiplying the corresponding numbers in cols. (1) and (2),

adding the results, and dividing the total by 14, thus

. .^, . l(10)+2(15)+3(20)+3(25)+2(30)+2(35)+l(40)
Arithmetic mean= -

—

1+2+3+3+2+2+1

10+30+60+75+60+70+40
14

=345/14

=24-64 miles,

and the deviations from 24-64 are shown in col. (4) ; the mean

deviation from 24-64, obtained by combining cols. (1) and (4) and

adding as shown in col. (8)

= [i(14-64)+2(9-64)+ . . . ]/14

=95-72/14

= 6-84 miles.

2. Similarly, the mean deviation from 24, making use of col. (5),

= [l(14)+2(9)+ . . . ]/14

= 6-93 miles.
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3. And the mean deviation from" 26, making use of col. (6),

-[1(16)+2(11)+ . . . ]/14

=7-07 miles.

The original determination gives a value which is less than any

of these three results, as was anticipated.

The mean deviation from the median is, however, difficult to

calculate with exactness when the observations are recorded in

groups between different limits : for this and other reasons we

shall not spend much time upon it, and we shall as a rule choose

the mean as origin of reference rather than the median. It

may be as well to explain the source of the difficulty by a small

hypothetical illustration.

Let us suppose that in making measurements of some organ or

character in 13 individuals we get a result l}dng between 4 and 6

units on six occasions, between 6 and 8 units on four occasions, and

between 8 and 10 units on three occasions. Here, assuming that all

the individuals in any group have the mid-value measurement for

that group, i.e. treating the distribution as one of 6 individuals

with a variable measuring 5 units, 4 individuals with a variable

measuring 7 units, and 3 individuals with a variable measuring

9 units, we get ^ as the mean deviation with 7 as origin and ^
for the mean deviation with 6-5 as origin, as the following table

shows :

—

Now the result obtained is in agreement with the minimum
mean deviation theory, granted that 7 is the median measurement,

as it might certainly be. But it is not so of necessity, and in that

case the assumption italicized might lead, in the above calculation,

to appreciable inaccuracy unless the number of observations is

large and the class-interval is small. For example, the actual
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distribution might, without contradictmg the previous data, con-

ceivably run :

—

Measurement.
/'

Frequency.
Deviation
from 7.

y'

Deviation
from 6-5.

fx' fy'

5
6-5

7-5

9

6

2

2

3

2
0-5

0-5

2

1-5

1

2-5

12

1

1

6

9

2'

7-5

18-513 •• •• 20

But in this case the median, the measurement for the seventh indi-

vidual from either end of the series, is 6-5, and according to the

first calculation the mean deviation referred to 6-5 as origin appears

to be greater than that referred to 7 as origin. If, however, we

recalculate, using the more detailed table, we find that the mean

deviation referred to 6-5 as origin (^^) is really less than the mean

deviation with reference to 7 as origin, as it should be, for the

latter now turns out to be %.

Standard Deviation. An alternative method of avoiding the

signs of the deviations from the average in order to estimate the

amount of variability of the distribution is to square each separate

deviation, sum the squares, divide by their number, and take the

square root of the result. This gives the root-mean-sqimre deviation,

and it is least when the arithmetic mean of the variables is chosen

as origin from which to measure the deviations, when it is known

as the standard deviation. For proof of this minimum principle

see Appendix, Note 5, but it is worth while testing it also with the

data given in Table (12).

The numbers in cols. (3) to (6) in Table (13) are obtained simply

by squaring the corresponding numbers in the same cols. (3) to (6)

in Table (12). Col. (7) is formed in order to enable us to calculate

the mean-square deviation referred to 25 as origin ; the numbers

in col. (3) show the squares of the deviations for each individual

observation, and the numbers in col. (1), by which they are multi-

plied, show how frequently the same values are repeated. Hence

we get the mean-square deviation with reference to 25

= [l(225)+2(100)+3(25)+2(25)+2(100)+l(225)]/14

=975/14

= 69-64.
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Thus the root-mean-square deviation referred to 25

= V(69-64)
= 8-345.

Similarly, by means of col. (8), formed on exactly the same
principle, we find that the root-mean-square deviation referred to

24-64 as origin

= V'[(214-33+ 185-86+ . . . )/14]

= V(973-22/14)
=8-338.

But 24-64 is the mean of the distribution, hence 8-338 is the standard

deviation.

With the help of cols. (5) and (6) the student may himself calcu-

late the root-mean-square deviation wdth regard to 24 and 26

respectively as origin ; the results should be 8-36 and 8-45. Of

the four values thus obtained for the root-mean-square deviation,

the least is that referred to the mean as origin, the standard devia-

tion, now proposed as a measure of variability or dispersion suitable

for most general purposes.

This measure possesses several decided advantages over the

mean deviation ; among others it lends itseK more easUy to certain

algebraical processes (see, for example, p. 158), a fact of importance

when we wish, for instance, to discuss two sets of observations in

combination, and it is in general less affected by ' fluctuations of

sampling '—errors which arise owdng to the fact that we cannot as

a rule survey the whole field of operations, but have to be content

"with a sample.

Table (13). Number of IMiles walked on Successive Days.

(1) (2) (3) (4) (5) (6) (7) (8)

/
No.
of

da3's.

Miles
walked.

Square of

Deviation
from 25.

Square of
Deviation
from 24 -64

Square of

Deviation
from 24.

Xi
Square of

Deviation
from 20.

fx-2

[No. in Col (1)]

X
[No. in Col. (.3) j

[No. in Col. (1)]

X
[No. in Col. (4)]

1 10 225 214-33 196 256 225 214-33

2 15 100 92-93 81 121 200 185-86

3 20 25 21-53 16 36 75 64-59

3 25 .

.

0-13 1 1 0-39

2 30 25 28-73 36 16 50 57-46

2 35 100 107-33 121 81 200 214-66

1 40 225 235-93 256 196 225 235-93

14 •• 975 973-22



48 STATISTICS

Quartile Deviation or Semi-interquartile Range. There is a third

measure of dispersion, based upon the determination of the quartiles,

and to introduce them we may refer again to Table (7) in order to

show how the idea of the median may be extended.

We define the individual occupying a position one-quarter the

way along any series of observations, arranged in ascending order

of magnitude of some organ or character common to all the indi-

viduals of the series, as the lower quartile ; and we define the indi-

vidual occupying a position three-quarters the way along the series

as the upper quartile.

When the distribution of observations is divided up into groups

lying between different limits of the variable under consideration

the quartiles may, like the median, be calculated by interpolation.

Thus, in the examination example, the total number of candidates

is 514 and i(514)=128-5.

But the 91st candidate from the bottom gets approximately 20

marks, and the 149th candidate from the bottom gets approxi-

mately 25 marks. Hence the imaginary candidate, No. 128-5,

should get a number of marks lying somewhere between 20 and

25. But if, in this neighbourhood, a difference of

(149-91) candidates corresponds to a difference of 5 marks,

37'5
(128-5-91) ,, should correspond ,, 5x marks.

Thus, the marks assigned to the lower quartile candidate are

approximately

58

=20+3-23.

Hence the lower quartile=2S-2d.

Again |(514)= 385-5.

But the 318th candidate from the bottom gets approximately 35

marks, and the 397th candidate from the bottom gets approxi-

mately 40 marks. Therefore, the imaginary candidate, No. 385-5,

should get approximately a number of marks

79

= 39-27.

Hence the upper quartile=39-2'7

.
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It is clear that the quartiles together with the median divide the

whole series of observations into approximately four equal groups, so

that the quartile marks

give a rough idea of the 23'23 31 '52 39'27

distribution on either O j;j^^]

—

q;:

side of the average. For

this reason half the difference between the quartiles provides a

convenient measure of the dispersion, and it is called the quartile

deviation or semi-interquartile range ; thus, if Q be the lower and
Q' the upper quartile, we have

the quartile deviation=^\{Q'—Q).

In the above example, this measure

= i(39-27-23-23)

= 1(16-04)

= 8-02.

If a more minute analysis of the distribution of variables is

desired, we may range them in order of magnitude as before, and

divide up the series into ten equal parts, recording every tenth along

the line ; these tenths are called deciles.

Thus, the deciles in the examination example correspond to the

marks assigned to imaginary candidates numbered as follows :

—

51-4, 102-8, 154-2, 205-6, 2570, 308-4, 359-8, 411-2, 462-6,

and they can be calculated by the interpolation method used in

fuiding the median and quartiles.

This way of representing the chief features of a distribution, by

quartiles, etc., was much used by Galton in his researches and

writings.

The student mo^y be perplexed as to which should be used of so

many different measures of dispersion or variability, but there

need be no real confusion. If a rough estimate only is wanted the

quartile deviation is a convenient measure, assuming that the

variables observed or measured can be ranged in order of magnitude

so as to admit of the quartiles being readily picked out. Also the

measure thus obtained is not unsatisfactory when the distribution

of values of the variable is fairly symmetrical and uniform in its

gradation from greatest frequency to least. If, however, it is

conspicuously skew (unsymmetrical) and there are erratic differ-

ences in frequency between successive values of the variable, it

is better to choose a measure which gives the magnitude and

the position of each recorded observation its due weight in the

deviation sum.

D
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Then again the choice as between the standard deviation and the

mean deviation may be sometimes determined by the particular

kind of average which suits the problem best. But as the arith-

metic mean is the most important and the most commonly used

average, so the standard deviation is certainly the most important

measure of dispersion.

It will be shown later that the following relations are approxi-

mately true when the distribution of variables is not very far from

being symmetrical :

—

(1) Quartile deviation=^ ^{Standard deviation).

(2) Mean deviation =i{Standard deviation).

In (2) the mean deviation should be measured from the mean.

Also (3) a range of two or three times the standard deviation

on both sides of the mean Avill be found to include the majority

of the observations in the distribution.

Coefficient of Variation. Before \Ye pass on to illustrate the

subject of averages and variability by means of a few examples

it is necessary to introduce one more constant known as the co-

efficient of variation. It is a measure of variability but it differs

from the chief measures alread}^ discussed in that they are absolute

measures, whereas the coefficient of variation, wTitten C. of V. for

short, is a ratio or relative measure. The need for it arises when
we reflect that in order to gauge fairly the amount of variability we
ought to have in mind also the size of the mean from Avhich the

variation is measured
;

just as a difference of 1 foot between the

heights of two men is a conspicuous difference when the normal

height is between 5 and 6 feet, whereas the same difference of 1 foot

between two measured miles would be trifling because the standard

mile contains over 5000 feet.

The coefficient of variation has been defined by Karl Pearson

{Phil. Trans., vol. 187a p. 277), who first suggested its use, as ' the

percentage variation in the mean, the standard deviation (S.D.)

being treated as the total variation in the mean,' so that

C. of V. = 100 S.D./Mean.

He pointed out that it would be idle, in dealing with the variation

of men and women (or indeed very often of the two sexes of any

animal), to compare the absolute variation of the larger male organ

directly with that of the smaller female organ, because several of

these organs, as well as the height, the weight, brain capacity, etc.,
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are greater in man than in woman in the approximate proportion

of 13 : 12.

As an example of the use of the C. of V., figures may be quoted

from a paper by R. Pearl and F. J. Dunbar {Biomelrika, vol. ii.

pp. 321 et seq.), On Variation and Correlation in Arcella. Measure-

ments in mikrons were made of the outer and inner diameters of

504 sjDecimens of a shelled rhizopod belonging to the group Impcr-

forata, family ArcelUna, with the following results, to two decimal

places :

—

Mean. S.D. C. of V.

Outer diameter .

Inner „

55-79

15-91

5-73

217
10-27 per cent.

13-66 „

Thus, judging by the S.D. column, giving the absolute size of

deviation, the outer diameter would appear to be more variable

than the inner, but the C. of V. column shows that, if we take the

sizes of the two diameters into account, the inner is reaUy the

more variable of the t^^o. To turn aside the edge of possible criti-

cism it should be added that the authors also give the errors to

which the above measures are subject, as unless these are known
we cannot tell whether the differences observed in variation are

significant or not of a real difference in fact, but that question

must be left until the theory of errors due to sampling has been

developed in a later chapter.

The C. of V. varies considerably for different characters. W. R.

Macdonell states that ' 3 to 5-5 are rei^resentative values for varia-

biUty in man, Avhile in plants it may run to 40,' and Pearson and others

have shown that for stature in man it varies from about 3 to 4

and for the length of long bones from 4 to 6.
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FREQUENCY DISTRIBUTION : EXAMPLES TO ILLUSTRATE

CALCULATING AND PLOTTING : SKEWNESS

Calculation of Mean and Standard Deviation. Example (1).—We
return now to the examination example in order to show how the

labour of calculation in finding the arithmetic mean and standard

deviation of a frequency distribution may be somewhat lessened.

The various steps in the process appear in Table (14). In the

first column the marks at the middle of each class-interval have

been written down, and we make the assumption that all the candi-

dates in any one class have the same number of marks, namely, the

marks at the middle of the class-interval. In any case where the

number of observations is large, and where the class-intervals are

reasonably small, the errors resulting from such an assumption will

be insignificant, because the individuals in each class are Just as

likely to have values above as below the value at the middle of the

class-interval, and they will therefore compensate for one another.

We now seek to alter the scale of marking so as to produce a

simpler set of marks than the original, which will make the work
of finding the mean also simpler, but we must not forget at the

end to change back again to the original scale. We choose a number
from col. (1), somewhere near the required mean, to act as a land

of origin from which to measure the other numbers in the column.

This choice is only a rough guess, and it is really immaterial which

number is selected as origin, except that the nearer it is to the

mean the lighter will be the calculation to follow ; the number 33

has been selected in this instance.

In col. (2) are written down the deviations of the marks in each

class from 33, so that now some candidates appear as if they were

6, 10, 15 . . . marks to the bad, and others as if they were 5, 10,

15 ... to the good. So long as we remember to add 33 at the

end we can content ourselves therefore by finding the mean of the

marks as given in col. (2). But these again can be further simphfied

by dividing each candidate's marks by 5, and we then only need
52
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to find the mean of tlie marks as shown in col. (3), so long as we

remember to multijDly by 5 at the first step back to the old scale

of marking. The addition of col. (5) makes it easy to calculate

this mean, for it gives the result of multiplying each value of the

variable (the number of marks in each class) by its appropriate

weight (the number of candidates who obtained that number of

marks).

Table (14). Marks obtained by 514 Candidates in a certain

Examination—(Analysis of Method for Calculating

Mean and Standard Deviation).

Thus, on this new scale, the mean marks obtained are

5(_G)+ 9(-5)+2S(-4)+ . . . +87(0)+ • • • +6(+5)+ 3(+6)

514

-532+422

5l4

-110

514

:-0-214.
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This, then, is the mean of the marks obtained by the candidates on

the scale indicated in col. (3). If the marks are on the scale given

,in col. (2), the mean is 5(— 0-214), i.e. —1-070. To bring them back

to the original scale as in col. (1) we must add 33 to this result, so

that the required arithmetic mean

=-33+5(-0-214)

= 33-1-070

= 31-93.

To find the Standard Deviation, or the root-mean-square deviation

from the arithmetic mean, it is convenient as before to work with

the simplified scale, to measure the deviations from the arbitrary

origin (33) associated with that scale, and to make the necessary

corrections at the end of the work.

Col. (5) in Table (14) gives the deviation multiplied by tlie

frequency in each class, the frequency denoting the number of

times the particular deviation occurs. Hence, if these numbers be

multiplied again by the numbers in col. (3), we shall have each

separate deviation squared and multiplied by its frequency. The

results are shown in col. (6), and they must be added, and their

sum divided by the sum of the frequencies (514), to give the mean-

square deviation, which we may represent by s^.

Thus 52^2814/514

= 5-475,

and this is the mean-square deviation referred to 33 as origin.

We require the corresponding ex23rcssion referred to the mean,

31-93, as origin. If we denote this by s,,^^ there is a simple relation

connecting the two, namely,

where x is the deviation of the mean itself from 33 [see Appendix,

Note 5] ; of course 5„j, s, and x are all to be measured on the same

scale, the simplified scale adopted with 5 marks as unit.

Now we have already shown that the deviation of the mean from

33— —0-214, and this is therefore the value of x.

Hence ^^) s,„2_5-475- (-0-214)2

^('Y' .r =5-475-0-046

,,S' y =5-429
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And, returning to the old scale, the standard deviation, usually

denoted by a

=5(2-33)

= 11-65.

We notice that 3ct= 34-95, and this ranj^e on either side of the

mean amply takes in all the observations.

The mean deviation is readily found from Table (14) by adding up

the numbers in col. (5) regardless of sign and dividing by the sum
of frequencies, 514.

Thus, on the new scale, the mean deviation

54
5 14

= 1-856,

which, on the old scale, becomes 5(1-856) or 9-28. This, however,

is the mean deviation measured from 33 as origin, and a correction

has to be applied to get the mean deviation measured from the

median or from the mean.

To get the mean deviation from the mean we note that the

difference between the mean, 31-93, and 33 is 1-07. Hence it

should be clear from Table (14) that, by measuring from 33 instead

of from 31-93, Ave have made the deviations of all the marks from

33 upwards too little by 1-07, and we have made the deviations of

all the marks frojn 28 downwards too much by 1-07. Hence, to

get the deviation required we must add to 9-28 an amount

= 5T4[l-07(87+79+ . . . +3)- 1-07(82+58+ . . . +5)]

1-07
=iJi: (283-231)

514

• = x52
514

=0-108.

Therefore, the mean deviation measured from the mean=9-39.

This may be compared with ;, (standard deviation) =9-32.

Also the quartile deviation _for this distribution has been shown

to be=8-02, and it may be compared with |(standard deviation)

=7-77.

Plotting of a Frequency Distribution. The data for the two

examples which follow are taken from the Quarterly Return of

Marriages, Births, and Deaths, No. 261, issued by the Registrar-

General.
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The first shows the proportion to population of cases of infectious

disease notified in 241 large towns of England and Wales for the

thirteen weeks ended 4th April 1914. This proportion was given

for each town sei^arately in the Return, but, in order to bring out

the distinctive features of the distribution, the several towns have

Table (15). Proportion to Population of Cases of Infectious

Disease notified in 241 Large Towns of England and

Wales during the Thirteen Weeks ended 4th April 1914.

Case Rate
per 1000
persons
living.

Each dot below represents One Town with Notified Rate of Infectious Disease
between limits as given in previous coUinin.

Total No.
of Towns
with given

Rate.

0—

2—

4—

6—

8—

10—

12—

14—

16—

18—

20—

22—

24—

26—

5

39

69

41

29

22

16

7

5

3

4

1

241

been, in Table (15), represented by dots and put into different classes

according to the proportion of infectious cases notified in each,

with a separate line for each class : e.g. if the proportion for any

town was 5-37 a dot was placed in the line corresjDonding to the

class of to^\'ns for which the rate was ' 4 and less than G.' Every
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fifth dot in each line was ticked off, so as to make them easy to

count up and also to keep the lines, down the paper as well as

across, straight. The frequency, i.e. the number of dots in each

class, Avas then recorded in a column at the extreme right-hand

side of the paper.
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Rate of Disease per 1000 persons living

Fio. (1).

It will be at once seen that this procedure, without calculating

any averages, etc., ultimate!}' gives to the eye a very good picture

of the distribution, and indeed it is the basis of the graphical method
of studying statistics. In drawing a proper graph we use a specially

ruled sheet of paper which is divided up into a large number of

equal small squares by ' horizontal ' (cross) and ' vertical ' (up-and-
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down) lines. This merely enables us to j)lace our dots accurately

in position, as shown in fig. (1), where the numbers 0, 5, 10 . . .

have been marked off along the Hne Ox to correspond to * case

y

70

CD

vC,65

S 60

§55
CD

.03

.o
Ho
O

^45

40

C5.

S35

'5>30

25

2 20

o

§"10

0:

, L

I ^ Modal Line
^/t ^^

t t^^Y
^^

1

..^ ^^ ir
X^ it

. . A
t /'^

_ . . ^S"
^^1

I
\ ±
n
jr
X
1

"t I
t A ^

1.
v.^

\I± -^ / X^^t"
" T 3 IL

"it 'T~ % X
3-.-^! +__

20 25
Rate of Disease per 1000 persons living

Fio. (2).

rates ' of these magnitudes : thus rates of ' 4 and less than 6
'

were recorded by 69 successive dots along a vertical line at a dis-

tance 5 (the centre of the class-interval 4-6) from the axis Oy.
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The final configuration in fig. (1), when turned half round, is

exactly the same as that of Table (15). K desired the frequency
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may be recorded, dot by dot, on a side piece of paper and then

only the topmost dot in each class need be marked on the graph

sheet. In order, however, to enable the eye to measure the height
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of each frequency in relation to the rest, it is advisable in that

case to connect up adjacent dots as in fig. (2) or as in fig. (3).

The last method of representation (fig. (3)), to which the name

histogram has been given by Professor Karl Pearson, is particularly

useful and should be carefully studied. It is formed in this case by

erecting a succession of rectangles with the lines 02, 24, 46 . . .

along Ox as their bases, corresponding to the successive classes of

the given distribution, and with heights proportional to the fre-

quencies proper to those classes. It is not necessary to complete

the sides of the rectangles, but, if they were completed, each would

enclose a number of squares proportional to the frequency of towns

with the rate of disease defined by its base : e.g. the first rectangle

would enclose 10 squares, the second 78, the third 138, and so on,

numbers respectively proportional to 5, 39, 69, and so on. It

follows that the total area enclosed between the histogram and the

axis Ox is proportional to the aggregate frequency of towns observed.

Now we might conceive a step further taken and a smoothed

curve drawn freehand so as to agree as closely as possible with

fig. (2) or fig. (3), but with all the sharp corners smoothed out, and

so nicely adjusted as to make the area enclosed between the curve,

the axis Ox, and lines parallel to Oy defining the limits of any class,

proportional to the frequency of towns in that class. To this

fig. (2) and fig. (3) might be regarded as aj)proximating if only a

sufficient number of observations were recorded, and only in that

case would it be possible to draw it with any accuracy. Such a

curve is called a frequency curve, measuring as it does the frequency

of the observations in diiferent classes.

[Assuming that corresponding to a given frequency distribution a curve

of this kind does really exist—and the assumption turns upon the frequency

being continuous—the reader who is acquainted with the notation of the

Calculus wdll recognise that, if {x, y) represents any point on the curve, ybx

measures the frequency of observations or measurements of an organ or

character lying between the values x and {x-\-bx), when the total frequency

comprises a large number of observations, say 500 to 1000.

Further, it will appear later that the mean, the median, and the mode
have a geometrical interpretation of no small importance associated with the

curve.

The mean x corresponds to the particular ordinate y which passes through

the centroid or centre of gravity of the area between the frequency curve

and axis Ox, because

the mean= J ^
'S,{x . ybx)

jJ^ 2(7/5a:),

5.1-^0 S,r->-0

where the summation extends throughout the distribution,

= jxydx/jydx

where the integral extends throughout the curve.
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The median x corresponds to the ordinate y which bisects this same area ;

e.g. in fig. (3), the number of small squares on either side of the median in the

space bounded by the histogram and the axis represents half the total number
of observations, two small squares corresponding to each observation.

The mode x corresponds to the maximum ordinate of the curve, measuring
the greatest frequency in the whole distribution.]

Skewness. There is one feature of a frequency distribution which

catches the eye sooner ahnost than any other, and that is its sym-

metry or lack of symmetry. It is important therefore that we
should have some means of measuring it.

In a sjanmetrical distribution the mean, mode, and median

coincide, and we have, as it were, a perfect balance between the

frequency of observations on either side of the mode or ordinate of

maximum frequency. In a skew distribution the centre of gravity

is displaced and the balance thrown to one side : the amount of this

displacement measures the ske\^^less. But there is another factor

to be taken into account, for when the variability of the distribu-

tion is great the balance is more sensitive than when it is small,

and the difference between mean and mode is consequently more

pronounced though it may not be significant of any greater skew-

ness. This will be clear in the light of the analogy of the swing

of a pendulum. If OPP' denote the pendulum in the accompanying

figure, OAA' its mean position, and OBB' an extreme position, the

displacement in the position OPP' from the mean, if measured

along the scale AB, is AP,

and, if measured along the

scale A'B', is AT'. But,

since the amount of swing

in either case is the same,

it would be more appropri-

ate to write the linear dis-

placement as a fraction of

the full swing so as to make
these two measures also the

same, thus

AP/AB=A'P'/A'B'.

So, in the case of a fre-

quency distribution, Profes-

sor Karl Pearson has suggested as a suitable measure for skewness,

not the difference between mean and mode, but the ratio of this

difference to the variability. Thus

sJcewness= {mean— mode)[S.D.



62 STATISTICS

or, approximately,

=3(mean— median)/S.D. (see p. 39),

a form which is sometimes useful.

According to this convention the skewness is regarded as positive

Skewness

Skewness

Mode Mean Mean Mode

-^
X increasing X increasing

when the mean is greater than the mode, and as negative when

the mode is greater than the mean.

Illustrations of frequency curves, Avith the position of mode and

mean marked, will be found in Chapter xvii.

We proceed to the detailed calculations necessary in the infectious

diseases example.

Table (16). Proportion to Population of Cases of Infectious

Disease notified in 241 Large Towns of England and

Wales during the Thirteen Weeks ended 4th April 1914.

(1) (2) (3) (4) (5)

Case Rate per
1000 persons living.

Deviation
from 7.

Frequency of

Towns with
given Rate.

Product of

Nos. in

Cols. (2) & (3).

Product of

Nos. in

Cols. (2) & (4).

and less than 2

{X)

- 3
(/)

5
(A-)
-15

(A-'-)

45

2 „ „ 4 _ 2 39 -78 156

6^ » » 6 - 1 69 -69 69

6 „ „ 8 .

.

41

8 „ „ 10 + 1 29 + 29 29

10 „ „ 12 + 2 22 + 44 88

12 „ „ 14 + 3 16 + 48 144

14 „ „ 16 + 4 7 + 28 112

16 „ „ 18 + 5 5 + 25 125

18 „ „ 20 + 6 3 + 18 108

20 „ „ 22 + 7 4 + 28 196

26 „ „ 28 + 10 1 + 10 100

•• 241 + 68 1172
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Example (2).—The various averages and measures of variability

of the distribution can be calculated just as in the case of the last

example, and the data required to determine the mean and the

standard deviation are set out in Table (16). We can afford now

to miss out some of the more obvious steps in exjDlanation.

On the scale of col. (2), where a difference of 2 in the case rate,

per 1000 persons living, is the unit and where a case rate of 7 is

taken as origin, the mean, by the result of col. (4)

n s_— 2 4 1

=0-282.

Hence, on the original scale, the mean

= 7+2(0-282)

=7-564.

Again, the mean-square deviation, on the scale of col. (2), measured

from 7 as origin is

6 241

= 4-863
;

and X, the deviation of the mean from 7 as origin, on the scale of

col. (2)=0-282. Thus the mean-square deviation measured from

the mean,

=4-863- (0-282)2

=4-783.

Therefore, the standard deviation a, on the original scale

= 2\/'4^783

=4-374.

Since 3cr= 13-122, the range ' (mean— 3a) to (mean+3CT) ' includes

all but one or two observations.

To determine the median, Ave conceive the towns ranged in order

according to the proportion of infectious cases notified in each,

from the least to the greatest, and the town -^dth the median rate

is the 121st from either end.

But the 113th towTi has a notified case rate of approximately 6

per 1000, and the.154th town has a notified case rate of ai^proxi-

mately 8 per 1000.

Thus a difference of 41 towns corresponds to a difference of 2 in

the rate, hence a difference of 8 towns corresponds to a difference

of 0-39 in the rate ; therefore the median /•aie=6-39 approximately.

By referring to the original records and writing down, the rate
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for each town in the group ' rate 6 and less than 8 ' in which the

median lay, the accurate value of the median turned out to be 6-30.

Theloiver quartile or case rate of the imaginary town, No. J(241),

or 00-25, one-quarter way along the ordered sequence of towns, is

readily shown to be 4-47, and the upper quartile or case rate of

to^v^l No. f(241), or 180-75, is 9-84.

Hence the quartile deviation

= i(9-84-4-47)

=^2-69.

With this may be compared |(S.D.)= |(4-37)=2-92.

Again, the mean deviation measured from 7

=2(^)
= 3-253.

Measured from the mean, it becomes

=:3-253+^'^^^[(41+69+39+5)-(29+22+16+7+5+3+4+l)]
241

= 3-253+ (0-564)(67)/241

=3-41

and this may be compared with |(S.D.)=|(4-374)=3-50.

If we estimate the mode by inspection of the frequency graphs in

figs. (2) and (3), we should say it comes between 5 and 6 ; supposing

we call it 5-5, very roughly.

In this case, taking the values actually calculated for mean and

median,

(mean—mode)= 7-56— 5-50
=2-06,

and 3(mean— median)=3(7-56— 6-39)

= 3(1-17)

= 3-51
;

so that the rule

(mean— mode)= 3(mean— median)

is far from being true according to these results ; this is partly due,

of course, to the very unsymmetrical character of the distribution.

The relative positions of the mean, median, and modal, points

as calculated are indicated in figs. (2) and (3) by three lines drawn

parallel to Oy through these points to meet the graph.

Finally, skewness:^ (mean— mode)/S.D.=2-06/4-37=0-47.

Example 3.—The next example deals ^\'ith the deaths of infants

mider one year, out of every thousand born, in 100 great towns in

the United Kingdom during the thirteen weeks ended 4th Aj)ril 1914.
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The details of the calculation may be left in this case to the reader,

who is recommended to follow the method shown in the last example

so far as possible throughout, including the plotting of the distribu-

tion in different ways. The statistics are as follows :

—

Table (17). Death Rate of Infants under 1 Year
PER 1000 Births.

(1) (2) (3) (4)

No. of Towns No. of Towns
Death Rate. with Death Rate Death Rate. with Death Rate

as in Col. (1). as in Col. (3).

30 and under 40 1 120 and under 130 16

50 „ 60 3 130 .. 140 11

60 „ 70 2 140 „ 150 10

70 „ 80 6 150 „ 160 8

80 „ 90 7 160 „ 170 3

90 „ 100 6 170 „ 180 1

100 „ 110 11 200 ,., 210 1

110 „ 120 13 240 „ 250
1

1

The more important results are :

—

Arithmetic mean=118-9 ; S.D.= 32-2
;

median^ 120-9
;

quartile deviation=19-5.

Example (4).—As another examjole corresponding details may be

worked out for the following temperature records taken at noon

at a certain spot in Chester week by week during a period of time

covering five years, the results in this case being :

—

mean=55-10; S.D.=10-33
;

median=54-88
;

quartile deviation=7-94

Table (18). 257 Weekly Records of Temperature (Fahrenheit).

(1) (21 (3) (4)

Temperature No. of Records Temperature No. of Records
Limits in between Limits Limits in between Limits
Degrees. shown in Col. (1) Degrees. shown in Col. (3)

25-5-29-5 1 53-5-57-5 30-5

29o-33o 1 57-5-61-5 31-5

33-5-37-5 9 61-5-65-5 30

37-5-tlo 11-5 65-5-69-5 26

41 •.5-45-5 28 69-5-73-5 13-5

450-49-5 31-5 73-5-77-5 4
49-5-53-5 36-5 77-5-81-5 3
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Before closing the chapter a sHghtly different manner of graphing

the statistics is worth noticing, as it provides us mth a fairly quick

though rough alternative method of determining the mode and

median.

Take, for example, the examination marks data wliich for this

purpose must first be thrown into the second form shown below

Table (7). We mark off on some convenient scale along OX dis-

tances 5, 10, 15, 20 ... 65 from to represent these numbers

of marks respectively, and at the points obtained we erect lines

parallel to OY of lengths 5, 14, 42, 91 . . . 514 to represent the

numbers of candidates who obtained not more than 5, 10, 15, 20

... 65 marks respectively. A freehand curve is then drawn

through the summits of these lines in the manner indicated in

fig. (4), starting from a height 5 and rising to a height 514 above

the axis OX. It is called an ogive curve.

By means of this curve we can approximately state at once how

many candidates obtained any given number of marks or less.

Suppose, for example, we wish to know how many candidates

obtained 22 marks or less, we have only to measure off a distance

22 from 0, represented by ON, and erect a perpendicular NP to

meet the curve at P. Since NP=110 we infer from the manner in

which the curve has been formed that 110 candidates obtained

22 marks or less, so that, incidentally, the 110th candidate from

the bottom must have obtained approximately 22 marks. This

suggests that by worldng backwards we can also read off roughly

the number of marks gained by any particular candidate when his

order in the list is known. Thus, to find the median, i.e. the marks

due to candidate No. 257-5, we merely draw a line parallel to OX
at a height 257-5 above it and the portion of this fine cut off between

the curve and OY measures the median. The value given by this

method is approximately 31-5. Similarly the quartiles are found

by drawing lines parallel to OX at heights 128-5 and 385-5 above

it with results about 23-3 and 39-2 respectively.

Again, as we gradually increase the number of marks, the number

of candidates getting that number of marks or less must increase

also, but the rate of tliis second increase is variable. Th« reader

will perceive that where the height above OX changes slowly the

gradient of the curve is small, but where it changes by big steps

the gradient is steep, and it is at its steepest just in the neighbour-

hood where the greatest addition is being made to the height as

the marks increase, i.e. where the frequency of additional candi-

dates is at its greatest, so determining the mode : this should be
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clear on a comparison of the two arrangements of the data in and

below Table (7). By sliding a straight-edge along the contour of

the curve we can estimate approximately where the curve is

steepest, for at this point the direction of turning of the ruler or
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straight-edge must change. This gives for the mode a value in the

neighbourhood of 32.

It might be advisable to treat the other examples by this method
also, so as to compare results.
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GRAPHS

From the mathematical point of view graphs may be regarded as

the alphabet of Algebraical Geometry.

We can locate a point in a plane, relative to two perpendicular

lines or axes as they are called, OX, OY, which serve as boundaries

of measurement, when we know y and x,

its shortest distances from these boun-

daries. This fact serves to connect up

Geometry, in which points are elements,

with Algebra, in which a:'s and ?/'s,

X standing always for numbers, are ele-

ments. The names abscissa {ah—from,

and scindo—I cut) and ordinate are given to x and y, or, when we
refer to them together, they may be spoken of as the co-ordinates of P.

The celebrated French pliilosopher, Descartes (1596-1650), was

the founder of Cartesian Geometry, and if we may venture to com-

press the essence of his system into a single statement, it is this

—

When a point P is free to take up any position in a given plane,

its X and y are quite independent : they may be allotted any values

irrespective of one another. Suppose, however, that P is constrained

to lie somewhere on an assigned

curve, such as APB in the figure,

then X and y are no longer inde-

pendent, for, so soon as x is fixed,

y is fixed also ; it follows that in

this case some relation, algebraical

or otherwise, such as y=x^— 2x-\-l,

must exist between x and y, and the relation may be called the

equation of the curve which gives rise to it.

Now, if to every curve there corresponds in this way some

equation and to every equation some curve, it seems likely that the

simpler the curve the simpler will be the corresponding equation,

and vice versa. In fact, the student who does not know it already
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need only refer to the most elementary treatise on graphs to find

that every equation of the first degree in x and y, i.e. one which does

not involve any x^, y^, xy, or higher powers, represents some straight

line. Any such equation, e.g.

x'-3y+12-0,

can be at once thrown into

either the form

(1)
y=1,

-12

where — 12 and 4 are intercepts

made by the line on the axes

OX and OY ; or

(2) y=Jx-+4,

where ^, i.e. 1 in 3, is the measure of its gradient and 4 the height

above the origin at which it cuts the axis OY.

Further, every equation of the second degree in x and y, which

may involve x^, y^, and xy, but no higher powers, represents geo-

metrically some conic, a familj^ of curves comprising the parabola,

the ellipse, and the hyperbola, with the circle and two straight

Lines as particular cases. The earth and other planets, likewise

comets, in their journeys through space travel along curves belonging

to the same family, one of ancient and historical connections.

These conies need not, however, detain us, and we pass on at

once to an example of a cubic graph to show how a very little

X knowledge of the theory may be put

to some practical use. Sujipose a

box manufacturer has a large number

of rectangular sheets of cardboard,

3 ft. long by 2 ft. broad, and he

wishes to make open boxes with them

by cutting a square piece of the same

size out of each corner and turning

up the flaps that are left. How big

should the squares be if this is to be

done with as little ysaste as possible ? Clearly this is commercially

an important type of jsroblem to solve.

Let us denote a side of the square to be cut out of each corner

by x feet. Then the bottom of the required box will have dimensions

(3-2.r) ft. by (2-2x) ft.

and its depth will be x ft.

3-2.

V

[The
3ft. >-

ihaded flaps are bent upwards
along the dotted lines.]
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Hence the capacity of the box when completed will be

x{3—2x){2-2x) cu. ft.,

and he makes best use of the material who jsroduces the most

capacious box. Call this expression y and let us find the values

of y corresponding to different values of x so as to be able to draw

roughly the curve of which the equation is

y^x{3-2x){2-2x) (1)

Table (19). Table of Corresponding Values of x and y

IN THE CcjRVE y=x{3—2x){2—2x).

X 2x (3-2x) (2-2.r) a;{3-2.c)(2-2a;) y

-1 -2 5 4 -20 -20
-h -1 4 3 - 6 - 6

-I -* h
IF - 219

3 2

+ i + i i
^ +\% + 0-94

+ i + 1 2 i + 1 + 1

H + ij
3
2 * +A + 0-56

+ 1 + 2 1 6

+ U + # h -A -h - 0-31

+ ii + 3 -i
+ 2 + 4 -1 -2 + 4 + 4

+ 2^

0-2

+ 5 -2 -3 + 15 + 15

0-4 2-6 1-6 (0.2)(2-6)(1.6) 0-83

0-4 0-8 2-2 1-2 (0.4)(2-2)(1.2) 106
0-6 1-2 1-8 0-8 (0-6)(l-8)(0-8) 0-86

0-8

0-38

1-6 1-4 0-4 (0.8)(1.4)(0.4) 0-45

0-76 2-24 1-24 (0-38)(2-24)(l-24) 1055
0-39 0-78 2-22 1-22 (0-39)(2-22)(l-22) 1-056

0-40 0-80 2.20 1-20 (0-40)(2-20)(l-20) 1-056

0-41 0-82 2-18 1-18 (0-41)(2-18)(M8) 1-055

We get a tolerably good idea of the shape of the curve by plotting

the points {x, y) shown in Table (19) from a:=— f to a:=+2 as in

fig. (5). It is simply a matter of practice to be able to determine

the whole curve from a few points in this way, and the greater the

number of points plotted the more accurately will it be possible

to draw the curve. It should be noticed that the points for which

?/=0 are in a sense key-points to the curve : they are readily
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Length of Side of Square cut out

Fig. (5).
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found by maldng the factors separately zero in the right-hand side

of equation (1), namely x=0, 3— 2a:=0, and 2— 2a;=0, and by

jjlottuig them first they serve as a guide to the jjosition of points

subsequently plotted.

We want to Ivnow for what value of x the capacity of the box, y,

is greatest and the preliminary plotting is enough to indicate a

maximum value for y between x=0 and x=l, for the curve first

rises and then falls between these two limits. In order to discover

more exactly where the maximum is located we therefore plot

in addition the points corresponding to a;=0-2, 0-4, 0-6, 0-8 respec-

tively, and this is done on a larger scale than that used in the

first diagram because the accuracy is thereby increased (see fig. (5)

inset).

The calculations and figure suggest that the maximum required

is very near the point for which a;=0-4, so we next work out values

of y in this neighbourhood, corresponding, say, to a:=0-38, 0-39,

0-40, 0-41, with the results shown at the foot of Table (19). From

these we conclude that to a fair degree of accuracy the maximum
value of y is given by taking a:=0-395. It would be possible in

the same way to calculate more decimal places, but we have gone

far enough to make the method clear.

Hence the side of each square cut out should be of length

0-395 ft., or 4| in.

Whenever the value of one variable, y, dej)ends ujDon that of

another variable, x, in such a way that when x is given y is kno'WTi,

so that y may be termed a function of x, corresponding values of

x and y can be plotted—as was done in the example just discussed

—

and a curve drawn by joining up the points obtained, the relation

which connects x and y being the equation of this curve. More-

over, it is possible, by calculating enough points from the equation

and plotting them, to get the curve as accurately as we please.

In Statistics, however, we usually have to start the other way

round and reach the equation, if at all, last. We make observations

of two sets of variables, a set of cc's, and a set of y's, one of which

is dependent in some way upon the other

—

e.g. y, the dependent

variable, might denote the number of individuals observed to have

a certain organ of length x, the independent variable—and thus

we get pairs of corresponding values like {x^, y^), {x^, y^), {^z, Vz) •

We met with examples of this method of recording results in the

last chapter, and we need only rej^eat here that its chief virtue is

suggested in the root of the word itself—it is more graphic than a



GRAPHS 73

long table of figures and, by means of it, many of the essential

features of a problem are immediately seized upon.

Now for some j^urposcs it may be necessary to go further and

to find what curve would best fit the points plotted, assuming they

were numerous enough, and what equation between x and ?/ would

best describe the curve. But the graj)hs we meet in Statistics,

bearing, for instance, uj)on sociological or biological problems, are

in general much more wayward than the mathematical kind we
have referred to in the present chapter : it is impossible to set

down simple equations to which they can be rigidly confined, and

when we are unable to find any relation which accurately and

uniquely defines ?/ as a function of x we must rest satisfied with the

most manageable equation and the best fit we can get.

In sciences such as Engineering and Physics it is often possible

to fix upon two mutually dependent variables, x and y, and to

observe enough corresponding values of each to enable us to draw
a graph which answers very closely to the true relationship between

them, so that a connecting equation can be determined ; e.g. we
may plot the amount of elastic stretch, y, in a wire Avhen diiierent

weights, a-, are hung from the end of it, and it is found that y is

directly proportional to x. If we deal in this way with some
simple figures which are amenable to our purj)ose it may help to

make clear the nature of the same problem in Statistics.

The following corresponding values of x and y were given in a

Board of Education Examination (1911) :—

a;=100, 1-50, 2-00, 2-30, 2-50, 2-70, 2-80

;

y=0-n, 1-05, 1-50, 1-77, 203, 2-25, 2-42.

Allowing for errors 'of observation, it was desired to test if there

was a relation between y and x of the type

y^a+bx^- . . . (1)

In the first place, the shape of the curve obtained by plotting

y against x, as in fig. (6), would, to the initiated, probably suggest

a parabola, the equation of which is of type (1). In order to test

its suitability we proceed to plot y against x^, or, putting x^=^, we
plot y against |. If equation (1) holds, then, in that case

y=a^bi . . . (2)

should also hold, and this, in (^, y) co-ordinates, represents a straight

line. The result of plotting y against | should therefore be a

number of points approximately in a straight line—we say ' ap-

proximately ' to allow for errors of observation in the original data.
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Now from the given statistics corresponding values of ^ and y
are, since ^—x- :

—

1=1-00, 2-25, 4-00, 5-29, 6-25, 7-29, 7-84
;

y=0-n, 1-05, 1-50, 1-77, 2-03, 2-25, 2-42
;

Y
~
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and the resulting grajih, fig. (7), is very approximately a straight

line. To determine its equation, choose two points (not too close

together) on the line, which has been drawn so as to run as fairly

as possible through the middle of the points plotted, and, in choosing,

take points which lie at the intersections of horizontal and vertical

cross lines (the printed Unes of the graph paper) if such can be

Y

4 5

F.o. (7).

i

found, because their a;'s and 2/'s can be read off with ease and

accuracy. Two such points are

(2-8, •1-2) and (6-0, 2-0),
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and since each of these points lies on the Hne whose equation is

we have

Subtracting, we get

Therefore

l-2=a+6(2-8)

2-0=a+6(6-0).

0-8=6(3-2).

b=l

Hence a=2—f=J.

Thus the equation of the hne is

i.e. 4y=|+2,

and the law coiuiecting x and y is therefore

4y=x^-{-2.

The follo\\ing statistics, the result of an experiment in Physics

to verify Boyle's Law, may be treated in the same way. .r is a

number proportional to the volume of a constant weight of gas in a

closed space, and yis a, number proportional to its absolute pressure.

Corresponding values of x and y observed were :

—

X— 46-89 41-9G 40-33 38-88 37-37 36-06 34-71 33-47

y^ 76-32 85-38 88-93 92-36 96-09 99-61 103-51 107-51

^x= 32-39 31-08 29-97 28-76 27-26 25-32 24-04

[?/=lll-09 115-69 120-05 125-08 131-99 14209 149-81.

Boyle's Law states that the product xy is constant, and this may be

tested by putting |=- and plotting y against | ; the jjoints obtained
X

should be approximately in a straight hne.

Now in Statistics, as we have already explained, the exact con-

nection between the variables, x and y, is rarely so clear, though

the absence of law is not so complete as it might seem at first sight.

At this stage, however, we need not enter into the difficult question

of curve fitting : if draA\Ti M-ith care and used with judgment much
that is of value may be learnt by simple plotting and by connecting

up the resulting points by straight lines or a freehand curve. We
shall briefly explain or illustrate by examples how graphs and
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graphical ideas may be- used to serve three distinct purposes,

namely :

—

(1) to suggest correlation or comiection between two different

factors or events
;

(2) to supply a basis for finding by interpolation some values of a

variable when others are known
;

(3) -AS pictorial arguments appealing to the reason through the eye.

We reserve (2) and (3) for the next chapter and proceed at present

with an example of (1).

Correlation suggested by Graphical means. Consider the index

numbers, col. (2) Table (20), showing the variation from year to

year in wholesale prices between the years 1871 and 1912. It is

not an easy matter to take in satisfactorily the meaning of such a

mass of bare figures, but they are much easier to grasp when plotted

in a graph.

In this case the numbers x, representing years, and the numbers y,

representing prices, are measures of things of quite a different char-

acter, so that it is not necessary to take the x and y units of the

same size. Moreover they need not, in a case of this kind, neces-

sarily vanish at the origin, but it is convenient to draw the graph

in such a way that it shall occupy the greater part of the space at

our disposal. Thus, we have roughly 80 small squares across the

breadth of our graph paj)er, and between 1871 and 1912 we have

roughly 40 years ; we therefore take two sides of a square to 1 year

and mark off the years 1870, 1875, 1880, . . ., along an axis or

base line parallel to the breadth of the paper, as shown in fig (8).

Again we have roughly 70 small squares in the available space

from this base line to the top of our graph paper, and the whole-

sale price index numbers vary from 88-2 to 151-9, a range of 63-7
;

we therefore take one side of a square to correspond to a difference

of 1 in the price index number, and mark off the prices 90, 100,

110, ... , along an axis parallel to the length of the paper, as

shown in the figure.

We then plot points to represent the numbers in col. (2) of

Table (20). Thus, in 1880 wholesale prices stood at 129 ; we there-

fore travel along the width of the paper till we reach 1880 and

then upwards until we are opposite the 129 level on the axis of

prices, inserting a dot to mark the position. Similarly for all other

points, and the required graph is given by joining them up in

succession.
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Table (20). Marriage Rate and Wholesale Prices

Index Numbers.

(1) (2) (3) (4) (5) (6) (7)

Nine Years' Difference be- Nine Years' Difference be-

Year. Prices. Average tween Nos. in
Marriage Average of tween Nos. in

of Prices. Cols. (2) & (3).
rate. Marriage rate. Cols. (5) &(()).

1871 135-6 167

1872 145-2 174

1873 151-9 176

1874 146-9 170 . .

1875 140-4 139-3 +M 167 164 + 3

1876 137-1 138-6 -1-5 165 162 + 3

1877 140-4 136-5 + 3-9 157 159 - 2

1878 1311 133-8 -2-7 152 157 - 5

1879 125-0 131-5 -6-5 144 155 -11
1880 129-0 128-5 + 0-5 149 153 - 4

1881 126-6 125-2 + 1-4 151 151

1882 127-7 120-8 + 6-9 155 149 +' 6

1883 125-9 117-2 + 8-7 155 148 + 7

1884 1141 114-7 -0-6 151 148 + 3

1885 107-0 111-8 -4-8 145 149 - 4

1886 101-0 109-2 -8-2 142 149 - 7

1887 98-8 106-9 -8-1
I

144 149 - 5

1888 101-8 104-2 -2-4 144 149 - 5

1889 103-4 102-5 +0-9 150 149 + 1

1890 103-3 101-0 +2-3 155 149 + 6

1891 106-9 99-9 + 7-0 156 150 + 6

1892 101-1 98-7 + 2-4 154 151 + 3

1893 99-4 97-4 + 2-0 147 153 - 6

1894 93-5 96-3 -2-8 150 155 - 5

1895 90-7 95-0 -4-3 150 156 - 6

1896 88-2 94-3 -61 157 156 + 1

1897 90-1 93-8 -3-7 160 157 + 3

1898 93-2 93-4 -0-2 162 158 + 4

1899 92-2 93-8 -1-6 165 159 + 6

1900 100-0 94-7 + 5-3 160 159 + 1

1901 96-7 95-7 + 1-0 159 159

1902 96-4 96-9 -0-5 159 158 + 1

1903 96-9 98-3 -1-4 157 158 - 1

1904 98-2 99-5 -1-3 153 156 - 3

1905 97-6 100-0 -2-4 153 155 - 2

1906 100-8 101-3 -0-5 157 154 + 3

1907 1060 102-8 + 3-2 159 153 + 6

1908 1030 104-8 -1-8 151 153 - 2

1909 104-1 .

.

147 .

.

1910 108-8 150

1911 109-4 152

1912 114-9 155
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It is comparatively easy from this graph to trace the change

in prices from year to year and from decade to decade : for example,

we note that from 1873 to 1896 the tendency of prices was on the

whole doAvnward, and from 1896 to 1910 the tendency was upward.

Also on the assumption—not necessarily valid—that prices have

varied continuously, or at least consistently, during the intervals

between the dates to which the records refer, it is possible to read

off intermediate values from the graph : e.g. midway between 1883

and 1884 we get the figure 120 as the index number for prices.

On the same graph sheet we have also plotted the marriage rate

from year to year during the same period. The numbers are given

in col. (5) of Table (20). This rate varies from 142 to 176, a range

of 34, and we have a range of 40 small squares at our disposal in

plotting ; a difference of 1 in the marriage rate has therefore been

taken to correspond to one side of a square, and the marriage rates

140, 150, 160 .. . are accordingly marked along the axis perpen-

dicular to the same base line as before, which is used again to

measure the passage of years, but the second graph is drawn below

the line whereas the first was drawn above it. In this way we
are able to compare the two graphs, namely, the one registering

the change in prices and the one registering the change in marriage

rate from year to year.

It is interesting to observe that the two seem to be not uncon-

nected : they go up and down almost in the same time, and moun-

tains and valleys in the one correspond roughly to mountains and

valleys in the other ; in other words, there is some kind of correlation

or reciprocal relation between them. Now these mountains and

valleys are largely the result of what may be caUed short-time

fluctuations, and it is important to distinguish between these changes

which are transient and the more permanent or long-time changes.

In order to get rid of the former, which sometimes conceal the

latter, the following device has been adopted : noticing that the

wave period, the length of time taken for each complete up-and-

dowTi motion, is one of about nine years, nine-yearly averages have

been taken of the figures for wholesale prices right down col. (2)

of Table (20) ; thus 139-3 is the average of the index numbers from

1871 to 1879 inclusive, 138-6 is the average of the numbers from

1872 to 1880 inclusive, and so on, the results being recorded in

col. (3). When the points corresponding to these numbers are

plotted we get the broken line in fig. (8) passing through the body

of the original graph of prices and indicating its general trend in

the course of years as separated from the temporary fluctuations.
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Fio. (8). Graph showing Variation in "Wholesale Prices Index Numbers.
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Fio. (9). Graph showing Variation in ]\Iarriage Rate Index Numbers.
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The same procedure has been followed with the marriage rate

statistics ; the nine-yearly averages are showTi in col. (6) of Table (20),

and their graph appears as a broken line passing through the body

of the original marriage rate graph in fig. (9).
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Fig. (10).

Suppose we wish on the other hand to study the short-time

fluctuations as distinct from the ' secular trend,' we may do so

by forming the differences between the numbers for each year

and the corresponding nine-yearly averages, and plotting these

differences on convenient scales.

The numbers obtained in this way are recorded, -ndth their proper

signs—positive if above the average, negative if below—in cols. (4)

and (7) of Table (20), and the grajDhs of these differences are drawn,
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one below the other for comparison, on the same graph sheet

(fig. 10). The agreement in fluctuation from the average between

the two factors, marriage rate and prices, is more easily remarked

now than it was in the original graphs. High prices go as a rule

hand-in-hand "with prosperous times, and such times lead to more

frequent marriages. This statement must not be taken to imply

that when prices are high the times are always necessarily pros-

perous for the community as a whole : the lie direct would be given

to such an impHcation by any one who had experienced abnormal

war conditions.

After about 1892, while the fluctuations continue to be similar,

a tendency appears for the marriage rate graph to reach each

extreme point about a year in advance of the other, as though an

increase in marriages raised prices and a decrease lowered them.

There is no doubt that any economic change, especially if it takes

place on a large scale, will set up a system of corresponding forces,

sometimes in unexpected directions, actions and reactions succeed-

ing one another at intervals hke tidal waves producing each a back-

wash as it breaks, but such effects, even when anticipated in theory,

are not always easy to unravel in practice.

The comparison we have been discussing between changes in

prices and marriages is suggested in Sir W. H. Beveridge's Unemj)loy-

ment. The whole book A^dll repay careful study, but it contains

one particularly illuminating chapter on ' Cyclical Fluctuation ' with

a chart labelled ' The Pulse of the Nation,' because of the remark-

able picture it gives of the ebb and flow of the tide of national

prosperity. It consists of a series of curves representing respec-

tively :

—

(1) bank rate of discount per cent.

;

(2) foreign trade as measured by imports and exports per head

of the population
;

(3) percentage of trade union members not returned as unem-

ployed
;

(4) number of marriages per 1000 of the population
;

(5) number of indoor paupers per 1000 of the population
;

(6) gallons of beer consumed per head of the population
;

(7) nominal capital of new companies registered in pounds per

head of the population.

The interesting thing about these curves is to see the way in

which they move in waves of varying size up and down almost

together, showing a connection between such phenomena more

F
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intimate than one might at first have suspected. A note of caution

must be inserted here liowever : causal comiection must not be too

confidently inferred in discussing the correlation of characters

changing simultaneously with time ; because two events happen

together, one is not necessarily caused by the other.

An instructive article bearing on this point ajjpeared recently in a

periodical well laiown to students of social problems. It was there

stated that high positive correlation exists betA^een birth rate and

infantile death rate : in general the two rise or fall together, whence

Neo-Malthusians argue that the Avay to lower a death rate is to

lower the birth rate. The writer then contrasts Bradford, the last

word in the scientific care of infants, with Roscommon, where con-

ditions as to wealth and child welfare are the very reverse, and

points out that Bradford has a birth rate of 13 and an infant death

rate of 135, while Roscommon has a birth rate of 45 and an infant

death rate of 35. These figures, he suggests, prove instantaneously

that the Neo-Malthusians are guilty of the commonest of all fallacies,

they confound correlation with causation.

As an exercise in plotting the reader may see whether he can

discover any suggestion of correlation between crime and unem-

ployment by comparing the follo\\T.ng statistics, showing the number

of indictable offences tried in the United Kingdom and the trade

union unemj)loyed percentages respectively from 1861 to 1905 :

—

Table (21). Number of tried Indictable Offences and

Trade Union Unemployed Percentages (1861-1905).

No. of Indictable Trade Union
1

No. of Indictable Trade Union
Year. Offences tried Unemployed Year. Offence-s tried Unemployed

(in thousands). percentages. (in thousands). percentages.

1861 560 3-7 1874 53-5 1-7

1862 61-3 60 1875 500 2-4

1863 61-4 4-7

1864 58-4 1-9 1876 519 • 3-7

1865 59-9 1-8 1877 53-8 4-7

1866

1867

57-6

59-5

2-6

6-3

1878

1879

560
550

6-8

11-4

1868 62-4 6-7
1880 60-7 5-5

1869 61-3 5-9
1881 60-6 3-5

1870 561 3-7
1882 63-3 2-3

1871 531 1-6 1883 60-8 2-6

1872 51-9 0-9 1884 59-6 81
1873 53-5 1-2 1885 56-4 9-3
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Table (21). Number of tried Indictable Offences and Trade

Union Unemployed Percentages (1861-1905)

—

Continued.

Year.
No. of Indictable

Offences tried

(in thousands).

Trade Union
Uneinplo^-ed
percentages.

Year.
No. of Indictable
Offences tried

(in thousands).

Trade Union
Unemployed
percentages.

1886 56-2 10-2 1896 50-7 3-3

1887 56-2 7-6 1897 50-7 3-3

1888 58-5 4-9 1898 52-5 2-8

1889 57-6 2-1 1899 50-5 20
1890 550 21 1900 53-6 2-5

1891 541 3-5 1901 55-5 3-3

1892 58-3 6-3 1902 571 40
1893 57-4 7-5 1903 58-4 4-7

1894 56-3 6-9 1904 600 60
1895 50-8 5-8 1905 61-5 5-0

The chief point of difficulty in plotting such graphs is the initial

one of fixing upon the most convenient scales to use, and in this

matter hints only can be given, faciUty will come by practice. An
examination of Table (21) shoMs that the data cover a period of forty-

five years which can be marked off horizontally along a base line so

as just to fit comfortably into the available space across the graph

paper. The unemi^loyed percentages vary between 0-9 and 11-4,

giving a range of 10-5. Similarly the indictable offences recorded

(in thousands) present a range of 13-3. We might therefore very

well choose the same vertical scale for the measurement of indict-

able offences and unemployment, but, in order that the graphs

may run more or less together (without exactly overlapjDing) for

the sake of comparison, only the unemployment zero need be taken

actually on the base line, whereas the indictable offences may have,

say, the number 50 (thousand) at that level ; also it will be con-

venient to show the scale for unemployment on the right side

and the scale for offences on the left side of the paper.

An example dealing with matters somewhat different is provided

by a comparison of changes from week to week in

—

(1) the mean air temperature
;

(2) the percentage of possible sunshine ; and

(3) the rainfall.

The following is a record of observations taken at Greenwich in

1912 [data from London Statistics, vol. xxiii.] :—
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Table (22). Weekly Meteorological Observations

at gree^'wich (1912).

Mean Air
1

1 Mean Air

Week
Tempera-
ture

—

Per-
centage of

Rainfall

1

Week
Tempera-
ture

—

Per-
centage of

Rainfall

ended

—

Degrees possible
in

inches.
ended

—

Degrees possible
in

inches.Fahren- Sunshine. i Fahren- Svinshine.
heit.

1

1

heit.

Jan. 6 45-7 7 0-76 ' July 6 58-7 15 0-36

13 41-9 15 0-45 13 670 46 0-20

20 40-2 1 0-93 20 65-8 44 004
27 38-9 8 0-88 27 64-8 31 016

Feb. 3 300 21 002 Aug. 3 57-8 33 0-54

10 39-5 15 0-52 10 57-6 28 1-26

17 45-5 11 0-44 17 56-2 14 0-23

24 47-4 6 0-65 24 57-2 24 1-27

Mar. 2 49-8 21 0-52 31 56-9 27 1-33

9 44-6 31 0-79 Sept. 7 54-8 36 0-21

16 451 16 019 14 52-4 14 002
23 42-7 15 108 21 53-6 22 000
30 510 46 005 28 51-5 59 002

Apr. 6 48-0 43 007 Oct. 5 48-8 36 2-30

13 45-6 43 002 12 460 53 000
20 500 50 000 19 49-8 38 013
27 52-6 76 000 26 45-4 23 0-88

May 4 501 32 0-21 Nov. 2 491 31 0-55

11 59-7 29 006 9 47-2 6 018
18 55-2 49 0-69 16 43-3 3 017
25 541 38 019 23 46-2 6 0-31

June 1 570 47 017 30 40-4 13 106
8 54-2 35 0-99 Dec. 7 42-4 9 0-31

15 58-1 48 0-39 14 490 2 0-62

22 61-7 56 0-65 21 44-4 19 0-59

29 60-2 45 0-30 28 48-1 8 1-22

The rainfall graph here should be dra^^-n reversed {i.e. so that

it goes up as the rainfall goes down in amount, and vice versa),

because one would expect in general much rain to go with httle

sun and low temperature.

The range of temperature during the year is 37 degrees, of sun-

shine 75 per cent., and of rainfall 2-30 in. Hence the vertical

scales for these three graphs might be chosen so that, roughly,

40 units of temperature should correspond to 80 units of sunshine

and 2 units of rainfaU. Also the zeros of the three variables should

be so placed, relative to the horizontal base line registering the

weeks, that the three graphs may be conveniently compared -n ithout

causing confusion by too closely overlapping.



CHAPTER IX

GRAPHS {continued)

Graphical Ideas as a Basis for Interpolation. It frequently happens

in statistical records that aw kward gaps occur which recpiire to be

filled in ; this may be due to the fact that no record has been

made, or that it has been made with insufficient detail, or that it

has been lost or destroyed. Cases in point arise in connection with

returns like that of the Census which can only be undertaken every

few years, so that if figures are wanted for any intervening year,

as they are in very many instances, an estimate has to be made

from the knoAvn results of the years recorded. It is imperative, for

example, for many purj^oses of local or national government, to

be able to find with a fair degree of accuracy the population of

county boroughs and urban or rural districts at any given time,

to know the number of workers engaged in different occupations,

the amount of land in pasture and under various crops, the con-

dition of the people as to housing, of the children as to education,

and so on indefinitely.

Symbolically, with the same notation as we have used before,

we conceive the statistics in tabular form, like

Ui, y-i, Vs ' • • Vn

each y denoting the frequency corresponding to the character

measured by its companion x, e.g. the x's may stand for successive

dates and the y's for the frequencies of the population of a certain

district at those dates. If it happens that one or more of the y's, in

between the first and the last recorded, are missing, the problem is

to estimate the missing values by some method of interpolation, as

it is called. Various methods of arriving at such estimates are used,

but we shall only refer to the more elementary here.

A rough way of making the estimate, but one which is often as

accurate as the data will allo\^', is to plot the observations, each

(.r, y) being represented bj' a point, and connect them up, if there
85
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be enough of them, by a smooth curve drawn freehand P^ Pg P3 . . . P„

[see fig. (11)] ; to find the y proper to any other x we have then

only to draw the ordinate through the point {x, o) and measure the

y at the point where it cuts the curve. This is a not unreasonable

principle to follow, for in effect it

gives due weight to each of the

observations actually recorded,

and it assumes an even course

from each one to the next—

a

justifiable assumption in the

absence of any evidence that

some sudden discontinuity of

value has taken place.

If only two observations are

given, represented by the points

Pi {^v Vi) 'int^ P2 (•^2> ?/2)> the

curve connecting them is a straight line, and the y corresponding to

any other x is at once given geometrically, as fig. (12) shows, by

PM PiM
P2M2 P1M2

i.e.

or

2/2 Vi •"^2 •*'i

y-z-Vi
y=yi+'

tl/n JU-t

{X-X^),

the familiar proportional relation which is employed in this simple

case.

F
3^__,„-^-^

F>^ "^

M
y.

V

Example.—Given

Required log 5-826736.

Fig. (12).

log 5-82673= 0-7654249,

log 5-82674=0-7654257.
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Here a:,=5-826730 ?/i=0-7654249
^2=5-826740 ?/^=0-7654257

a;=5-826736.

Therefore, by means of the above relation,

0-000010

=0-7654249+0-00000048

=0-7654254.

The logarithmic curve y—logx is, of com-se, not a straight line,

and the value obtained for y only represents a first approximation

to the true value.

When more than two points are given there is bound to be a

margin of inaccuracy, more or less according to the data, intro-

duced in drawing the curve. For an example of this method the

reader may refer back to the curve on p. 67, which was used to

determine the median and quartiles. We may, as we saw, read

off from it the number of candidates who obtained not more than

any stated number of marks : e.g. 300 candidates obtained not

more than 34 marks ; or we may use it the other way round and

find the number of marks obtained by a stated number of candi-

dates : e.g. 10 per cent, of the candidates got less than 17 marks.

Such examples might be multipHed endlessly, and the method will

be found extremely useful when a liigli degree of accuracy is not

looked for. But greater confidence will be felt perhaps in such

results—though the foundation for it may be no more secure in many
cases—if we can translate them from geometrical to algebraical

form, if we can find, that is to say, some formula, like the simj)le

proportional relation already introduced above, which will give

one y when others are knoAMi.

In order to make the argument as general as possible we shall

speak of x and y as variables, and we shall think of the value of y
as depending upon that of x in such a way that when x is given,

y is known or it can be estimated * (in the sense that when the

year is given the population is known or can be estimated).

Suppose

t/=Co+qa:+C2.r2-J- .

[* This is equivalent to assuming that y is some function of .r, say y=J\x), and
clearly some such assumption is necessary if any estimate from the known values

to the unknown is to be possible. Further, for simplicity we assume J\.c) can
be expanded in a Maclaurin's converging series of ascending powers of x, which
simply means that we take the relation between x and y to be of the form
adopted above.]
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where the c's are constants to be determined, and their number

can be made to depend upon the number of knowTi values of y
which are used in the estimate.

Geometrically, the equation

2/=Co+Cia:+C2a;2+ . . . +c„a;"

represents a curve called a parabola of the nth. order, and such

a curve could be employed (and uniquely found—there is only one

parabola of the Idnd which will go through all the points) if we

based our estimate upon a knowledge of {n-\-\) y's corresponding

to given .r's, for we could readily make it pass through the (w-f 1)

known points {x^, Vq), [x^, y^), {x.^, y.^, . . . {x^, ?/„) by choosing

the (w+1) c's so as to satisfy the (/?+ !) simple linear relations :

—

2/i=Co+Ci.ri+C2a%2^ . . . +c„a:i«

2/2'^^o'T ^1*^2 "rC2'^2 "r • • • ~rCn'^2"

7/„=Co-(-Cj^a:„-)-C2.T„ -(- . . . -j-c„.T„".

When the curve is determined, in other words when the c's are

known, we can find any other y required by substituting the corre-

sponding x in the equation

2/=Co+Cia;+Coa;24- . , . +c„a;«,

i.e. by supposing this point {x, y) to lie on the same curve that goes

through the known jDoints.

It is well to mention here that the parabola is by no means alwaj^s

the best curve for fitting any given statistics, and when the number

of observations is adequate it is possible often to make a more

satisfactory choice. Once the equation of a suitable curve has

been determined the subsequent interpolation or calculation of y
for any given x is not as a rule a very difficult matter. The larger

question of curve fitting in general is reserved for a later chapter.

Example of First Metlwd {fitting with a parabolic curve). Let us

illustrate this process of interpolation by fitting a parabolic curve

to the folloA\ing figures, extracted from Porter's The Progress of

the Nation, giving the annual cost of Poor Relief (excluding insane

and casual) at five-yearly intervals, but with the amount for the

year 1845 omitted :

—

Year . . . 1835, 1840, 1845, 1850, 1855]

Cost in £1000 . . . 5526, 4577, ? 5395, 5890/
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Assuming that no extraordinary conditions prevailed in 1845 to

cause abnormality in expenditure, let us estimate what the figure

would be for that year judging from the given records just before

and after. Since there are four known points in this case, we take

as the curve through them a parabola of the 3rd order, namely :—

•

y=c^j^c^x+c.^x-+c^x^ ; . . . (1)

the four known points wUl then just suffice to determine uniquely

the four arbitrary constants Cq, c^, c^, Cg. Also, since the x class-

intervals are equal, it will simplify the algebra if we measure from

the year 1845 as origin, taking five years as unit for x and £1000

as unit for //, so that we get

x=—2, -1, 0, +1, +2 \

y=552G, 4577, ^/o- ^395, 5890J

where y^ is the number to be determined.

Since all five points are to lie on the curve with equation as in

(1), we have by substituting in that equation

—

8c,5526-

4577==Co-

-2ci+4c2

2/0== Co

5395=Co+Ci+C2+C3

5890=Co+2ci+4co+8c3.

Adding the first and last of these equations,

2co+8c2 =5526+5890 .... (2)

Adding the second and last but one,

2co+2c2=4577+5395
or 8co+8c2= 4(4577+ 5395) . . . (3)

Subtracting (2) from (3),

6co=4(4577+5395)- (5526+5890) . . (4)

=4(9972)-(11416)

= 39888-11416

= 28472.

Therefore yo=Co=£4,745,000.

If we only wish to make use of the records for the years 1840

and 1850, the appropriate fitting curve reduces to a straight line

y=Co+Ci^x,
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on which we assume the points

(-1,4577), (0,^0). (+1,5395)

to He, so that

4577=Co— Ci

5395=C(,+Ci.

Therefore, adding the first and last of these equations,

2co=4577+5395,
so that yo=Co=£4,986,000.

* Second Method {using a formula connecting the ordinates). When,

as above, the steps from each x to the next are equal, as commonly
happens in practice, it is possible to write doT^n a simple relation

between the y's, kno^vn and unloiown, without introducing the c's

at all. At bottom the method is the same as the last, inasmuch as

the elimination of the c constants by the first method really results

in the same formula for the unkno^\Ti y.

Let us represent the given statistics in this case by

. XQ-^nh\

Vn J

so that, if the fitting curve be

y=Co+Ci.r+C2Ct;24- , . . +c„X'",

we have, by substituting the co-ordinates of the first two points

in this equation,

2/l= Co+Ci(.To+ ^)+ C2(.l-o+ /0"+ . • . +Cn(«0+ ^)''

and 2/o=Co+Ci x^ -^H V + - ' • +c„a-o«.

Hence

2/i-2/o=Ci;i+C2(2.ro?i+A2)_|_ , . , _|_c^(w.To"-iA+ . . .)•

Now this result, which we call the \st difference between the y's,

is of (w— l)th degree in Xq, so that by subtracting two of the y's

we have reduced the degree in x^ by 1. Similarly,

2/2-2/i=Ci/i+C2(2.roA+3/i2)+ .... +c„(n.To"-^/^+ . • .)•

Thus we get a series of \st differences, each with the highest

term of the {n—\)th degree in Xq. Treating them as a series of new

[* The non-mathematical reader will do well to omit the rest of this section on
interpolation. ]
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ordinates and forming their differences in the same way, we get

what maj'^ be called the 2nd differences between the y's, a series

of ordinates each with the highest term of degree {n—2) in Xq.

Proceeding in this way the Zrd differences between the y's are a

series of ordinates of degree (w— 3) in Xq, the Aih differences are of

degree (w— 4), and so on, until ultimately we reach the nth differences,

which are of zero degree in Xq, and consequently involve only h.

It follows that the ni\\ differences must all be equal in value and

therefore, if we go one steja further and write down the {n-\-\)th

differences, these must vanish altogether.

If the reader finds any difficulty in following the argument

he should test it step by step for himself in the simple case of a

parabola of the third order when it should be perfectly clear.

The formation of the successive differences is conveniently sho\ATi

in Table (23).

Table (23). Successive Differences of Ordinates.

First Second Tiiird Fourth Fiftli

V difterence difference ditlerence difference difference

y.-\

A A 2. A^. A4. A5.

( yi-y»)
vx)

\
V2-2.'/]+3/o~|

2/3-22/2+2/1/
3/2 - 2/1 ) ys- 32/2+ 33/1 -2/0 'I

2/4 -32/3 +32/2 -3/1

J

Vl 2/4-43/3+ 62/2-^2/1+ 2/0)

2/3 - 2/i! 2/5 - 53/4+IOV3 - 10!/2+5;/i -
1/0

y-i

V4-2/3

2/4-2t/3+!/2

3/5-33/4+32/3-2/2

3/5-43/4+63/3-4^2+ 3/1)

y\
3/5 - 2/4

V5-2J/4+2/3

Vs

The law of formation should be apparent from this table, for it

is precisely that which we meet in the binomial expansion, e.g. the

wth difference is of type

n{n—l) n{n—l){n—2)
+(-iryo.

and by equating to zero the (n-|-l)th difference we have the relation

required between the y's.

Example.—Let us apply this method to the ' Poor Relief ' example

already considered. Since there are four known points the relation

between x and y must be of the form

as before. Hence the 4th differences must vanish, and taking the
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points in order from years 1835 to 1855 as (tq, ?/(,), (:rj, y^), (^2, i/j,),

(•^^3. yi)r (^4' Va)' we get

Z/4—4^3+%2-42/i+2/o=0

as the formula connecting five ^'s, four known and one {y.^) unknown.

Therefore %2=4(yi+2/3)— (2/0+2/4)

=4(4577+5395)- (5526+5890),

which is equivalent to equation (4) on p. 89,

Thus y„= £4,745,000.

Third Method {by means of advancing differences). In the last

method we employed a relation connecting y^ with all the preceding

«/'s, but it is possible also to express y„ in terms of ?/o
and the suc-

cessive differences, which may be written /\, A^j A^j • • • A" 5

we have, in fact, with the notation of Table (23) :

—

Ao=2/i-S'o> A 0^=2/2- 2^1 +2/o> Ao''=2/3-3«/o+3ii/i-?/o, . . .

Thus

2/1=2/0+ Ao-

2/2=22/1-2/0+ Ao'=2/o+2Ao+Ao'-
2/3=%2~ ^^2/1+ 2/0+A 0^

=3(2/o+2Ao+Ao')-3(2/o+Ao)+2/o+Ao'

=2/o+3Ao+3Ao'+Ao'-
2/4=42/3-62/2+42/1-2/0+ Ao^
=4(2/0+3Ao+3Ao'+Ao')- 6(2/0+2Ao+Ao')+4(2/o+Ao)

-

2/0+ A 0'

=2/o+4Ao+6Ao'+4Ao'+Ao*-

Here again the law of formation is clear, and it is readily estab-

lished by induction that, for all 'positive integral values of n,

^ ,
nin—\) ^ „ ,

nin—\)[n—2) ^ „
,

,_.

2/n=2/o+^Ao+
\ ^

Ao'+ \ 2 3 ^ °
"^

^ ^

a series which automatically comes to an end at the term Ao"-

An extension of this formula is obtained by writing 6 in place

of ?i, where 0<^<1. We then get

,

. ^ 6(1-6) ^ „ ,

6{l-6){2-e) ^ „ ,_,
2/g=2/o+^Ao--Y^Ao^+ \ 2 3

^ " • • •' • • • ^^^

which enables us to interpolate for a, y in between any two of a series

of y's corresponding to .r's advancing by equal steps. This relation
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is no longer identically true as was (5), for the series on the right

in (6) is unending, but its application in practice is justified when,

as the differences advance, the numbers obtained tend to grow

smaller and smaller, so that the remainder after a certain number

of terms can be treated as negligible. Unless this tendency is

reahzed without carrjing the differences far the formula is not

very satisfactory.

To illustrate the method of procedure the following figures may
be used from Table (7), p. 25:

—

Table (24). Marks obtained by certain Candidates

IN an EXAillNATION

No. of First Second Third
No. of Marks. Candidates. difference difference diflFerence

y A A2 AS

Not more than 45 447

37

„ „ 50 484
21

-16
1

»? •» )j 55 505

6

-15
12

„ ., 60 511

3

- 3

» » 5» 6o 514

Suppose now we ^dsh to know the number of candidates who
obtained a number of marks not more than 48. In that case, in

applying formula (6), we have

1/0=447, ^=(48-4o)/(50-45)=3/5,

Ao= 37, Ao'=-l<3, Ao'=l>

and hence, up to this order of differences, the required number of

candidates is given by

447+1 . 37-I^\-16)+^il^(l)
1.2^ ^1.2.3

=447+22-2+ 1-92+006

=471, approximately.

Also, number of candidates obtaining more than 48 marks, but not

more than 50

=484-471
= 13, approximately.
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Fourth Method {by means of Lagrange's Formula). We shall

consider one more formula, due to the famous French mathematician

Lagrange (173G-1813), which is useful when the recorded y's, corre-

spond to x's, which advance by unequal stages.

Let the given statistics be represented as before by

(•^0' !/o)> (-^l. yi)> (^2. 2/2). • • • K. 2/n).

and consider the equation

[X X^)\X X'2) . . . \x x^)

y=yo

-\-y

\Xq X^)\Xq X^) . . . (Xq X^)

(X Xq)[X X^) . . . (X Xf^)

(Xi Xq){Xj X2) . . . (^1 x^)

(X X^J){X Xi) . , . (X ^„-i) ,-.

+yn^ ^ ,^ , _ ,

—
.
••.(')

\X^ Xq){X^ X^) . . . [Xj^ ^n-l)

It is of the nth degree in x, and it is identically satisfied by the

(n-|-l) pairs of values

{x^xo, y=yo), {x=Xi, y=yi), • • • {x=^Xn, y=yn)-

It will therefore clearly serve as the fitting curve

?/=Co+Ci.c+C2a;2+ . . . +c„x'»,

being exactly of this type, and in order to get the y corresponding

to any other x we have only to substitute that value of x in (7).

Example.—The following figures, based upon data from Porter's

The Progress of the Nation, show the age distribution of criminals

in the year 1842.

Percentage of criminals up to age 25=52-0 {y^).

„ 30=67-3 (1/1).

„ 40=84-1 {y.,).

„ 50=92-4(^3).

Let us employ Lagrange's formula to find the approximate

percentage of criminals up to 35 years of age, making use of the

four ordinates given, and taking a:=35. We have

_^^(35-30)(35-40)(35-50) ^^g(35-25)(35-40)(35-50)
^ "^ (25-30)(25-40)(25-50) (30-25)(30-40)(30-50)

g^^
(35-25)(35-30)(35-50) g^^(35-25)(35-30)(35-40)

(40-25)(40-30)(40-50) (50-25)(50-30)(50-40)

= _10-4+50-475+42-05-4-62

=77-5.
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Number of cigarettes bought

Fig. (13).

Reasoning made Clear with the Help of Graphs or Curves. The

graphical method not only produces an instructive picture of a

scheme of observations, but it may also be used effectively on

occasion to pilot one through the intricacies of economic or similar

argument. The eye is a very ready pupil and is quick to pass on

what it sees to the mind ; it acts, that is to say, as an ally to the

understanding, which might get on A^thout it, but which certainly

gets on faster with it.

To illustrate this we shall consider the first jDrinciples of an

interesting class of curves relating y
to supply and demand.*

Curve of Demand. Conceive a

smoker who buys cigarettes at

the rate of x per day, and paj^s for

them at the rate of y pence each.

Altogether they cost him there-

fore a sum of xy pence per day,

which is conveniently measured

by the rectangle OABC in fig'. (13).

Notice that the cost price of each single cigarette is here represented

by the area {yx 1), while the total expenditure is represented by the

area {yxx).

Now let us suppose his country is at Avar and that the smoker,

to put himself in a position to discourage luxuries, decides to give

up smoking. Let us try to

measure in terms of pence the

cost of this great sacrifice to

him on the first day.

The first cigarette is probably

the hardest to do Avithout, and

the desire for it is so strong

that, if it Avere a mere matter

of monej^ and not of patriotism,

~X he Avould be Avilling to give as

manj^ pence as are represented,

say, by the rectangle 1-1 in

fig. (14) in order to haA^e it to smoke. If he went on to bargain

S-C

12 3 4

Number of cigarettes bouglit

Fig. (14).

[* A fuller account of these curves will be found in Cunynghame's Geometrical

Political Economy, where a rather more accurate interpretation of "surplus

value " is given, involving the introduction of subordinate curves. The
simplified statement here adopted seemed sufficient in an introductory course.

Marshall's Principles of Economics also contains many fascinating illustrations

of the use of such curves, mainly in footnotes. ]
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with himself in imagination, he would not be ready to offer quite

so much for the satisfaction of a second smoke soon after the

first : he would perhaps only give a number of pence represented

by the rectangle 2-2 in the figure for this second cigarette. And
if it came to a third he would offer less still, only ' 3-3 ' pence

perhaps, for the fourth ' 4-4 ' pence, and so on. The rectangles

here are of varjnng height, but each stands on a base of unit length.

Thus we find that the total sum he would be prepared to offer,

bargaining for cigarette after cigarette in this way, would be repre-

sented by the sum of the rectangles 1-1, 2-2, 3-3 ... in fig. (14),

where the addition of each unit length along OX means one more

cigarette in imagination smoked, and a diminution of unit length

in an ordinate parallel to OY means a reduction of Id. per cigarette

in the })rice the smoker would be prepared to pay.

But if he fell a prey to his persistent cra\'ing and actually bought

a number of cigarettes represented by OA in the figure, each would

cost him in the ordinary way only a number of pence represented

by AB, say, i.e. area (ABx 1), and his total expenditure Avould thus

be measured by the area of the rectangle OABC. He would get

them, that is to say, for less than he would be prepared to give

rather than go without them. The difference, the area of the

rectangles making up the portion BCDE of fig. (14), represents the

measure in pence of surplus enjoyment wliich he would obtain free

of charge, or it represents the

measure of free sacrifice he

makes if he is true to his

patriotic principles.

Let us now take an example

on a larger scale. Imagine a

small community of people,

producers and consumers, buy-

ing and selhng among them-

selves. Some of them are

coalowTiers and sell coal to

the others in the open market,

where competition is supposed free mid unrestricted in any way. This

last condition is emphasized, because it is seldom perfectly satisfied

in the real world of commerce.

Just as in the previous case we may represent the number of

cwts. of coal bought by a length OA measured along OX in fig. (15),

and the price actually paid in shillings per cwt. by the area of a

rectangle on unit base and of height OC along OY. Thus the

12 3 4 A
Number of cwts. of coal bought

FiQ. (15).



GRAPHS 97

total cost to the consumers in shillings is measured by the area of

the rectangle OABC.
But here again we may picture the consumers during a coal

shortage, when, rather than go without the first cwt. of coal, some
one among them would be ready to offer for it as many shillings as

are represented by the rectangle 1-1 in fig. (15), and for the second

c\H. some one would be ready to offer ' 2-2 ' shillings, for the third
' 3-3 ' shillings, and so on. The demand for coal could thus be

measured in shillings by the sum of the rectangles 1-1, 2-2, 3-3

. . . and, if OA runs into thousands of units of coal, the lengths

0-1, 1-2, 2-3 . . . along OX, corresponding to additions of 1 c^vt.

in the quantity bought, would in the limit be so small that the

sum of the rectangles would become practically equivalent to the

curvilinear area OAED in the figure, where DE is a curve drawn
through the summits of the rectangles, namely the curve of demand.

The consmners' surplus in this case would be measured in shillings

by the area BCDE, this being the difference between the measures

of the sum actually paid for the coal bought and the sum consumers

would have been willing to pay rather than go without it.

Curve of Supply. Now let us consider the question from the

point of view of the coalowners. We shall assume that the average

cost of production per cwt. of y
coal increases steadily as the

number of cwts. produced in-

creases ; this would not be an

unreasonable assumption in most

cases after passing a certain point, ^ «

since the richer coal measures ° :-
^

known are likely to be mined o "S

before the poorer ones, and the

cost of mining near the surface

is bound to be less than when

deep shafts have to be bored.

If, then, OA, fig. (16), represents the number of cwts. of coal

sold, and if the price in shillings per cwt. at which it is sold is de-

noted by the area of a rectangle on unit base and of height OC
along OY, the total payment received by the coalowners will be

measured in shillings by the area of the rectangle OABC.
But the cost of producing the first cwt. is perhaps measured

by the rectangle 1-1, that of producing the second cwt. by the

rectangle 2-2, the third by the rectangle 3-3, and so on, each rectangle

being draAvn on unit base representing an advance of 1 cwt. (The

G

12 3 A
Number of cwts. of coal sold

Fig. (1G).
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advance in the cost of production would not in reality be measured

by so much the cwt. of course, but the assumption is inaccurate

in degree only, not in principle, and, by making it, the argument

is rendered clearer.) Thus the actual cost of production is, in the

limit when OA is very large and divided up into relatively very

small parts, measured in shillings by the curvilinear area OAED,
where DE is a curve dra^vii through the summits of the rectangles

namely, the curve of supply.

The difference, BCDE, between the areas OABC and OAED
represents what is known as producers' surplus, for it measures the

profit made by the owners in selling the coal at a higher price than

the cost price of production.

Now let us combine the curve of supply (S.C.) and the curve of

demand (D.C.) in the same figure, fig. (17). Their meeting point

P determines the number of cwts.

of coal bought (x), and the selhng

price in shilUngs j)er cwt. (y).

For it is clear that under normal

conditions it would not be profit-

able to coal producers to pass this

point, because beyond it the de-

mand on the part of coal consumers

measured in money is less than

the cost of production : they are

not willing on the average to pay

so much as ys. per cwt. for it,

and it costs more than ys. per cwt.

on the average to produce. If,

on the other hand, the amount of coal produced decreases below

X cwts., the greater this decrease the higher does the profit become
on the sale of it, because the greater is the difference between the

cost price and the selling price ; hence, as profits become more
pronounced, recruits wiU be attracted into the coal-producing

business, and, if this goes on, deeper shafts will have to be bored

and poorer fields worked until profits begin to decrease again and
the supply once more approaches x cwts. Thus sooner or later

the j)roduction of coal and its market price will tend to the level

determined by the equilibrium point P where the supply and

demand curves meet.

Endless varieties of problems may be discussed by altering the

conditions and observing the effect produced in the standard

diagram. Three examples Mill suffice to illustrate the method.

Number of cwts. of coal bought or sold

S.C = Stipplij curve

D.C. -Demand curve

Fig. (17).
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1. Effect of a Change in Normal Demand. Here we suppose the

normal conditions of supply are unaltered—it costs just as much
as before to produce the same amount of the commodity in question

;

but a more eager demand on the part of consumers shows itself in a

readiness to purchase more at any given price than would have

been purchased under the old conditions : this may conceivably

be due to a general increase in the purchasing power of these con-

sumers, or it may be the result of a shortage of some other com-

modity which causes this one to be more widely used, just as

margarine, for instance, has been known to take the place of butter
;

whatever the reason may be, the effect is that the demand curve

now occupies a higher level throughout its length, D'C in place of

D.C. in the figures.

When we turn to the supply side of the question, there are three

Y

Decreasing Return

stages which, although they shade into one another in practice, it

is well to separate clearly in theory : (1) the only supplies immedi-

ately available are those actually in the hands of dealers
; (2) to

meet the increased demand, and so earn for themselves increased

profits, manufacturers will speed up production, b}' working over-

time, etc., with the help possibly of any disengaged labour or

capital they may be able to secure, and the resulting extra supplies

will be available after a short time
; (3) if the demand continues

unabated manufacturers, by offering higher wages and interest,

will seek to attract fresh labour and capital from other engagements

into their business, and, by renewing their machinery and generally

improving their organization, they will produce on a larger and

relatively more economical scale. Moreover, other manufacturers,

seeing the profits to be earned. wiD be attracted into the same line

of business also, so that by this time the current available supplies

of the commodity may exceed very appreciably their old figure.
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But all this happens only in the long run, and the economist has

always to bear this extremely important element of time carefuUy

in mind when he seeks to estimate the effects of any proposed

action.

We assume then that the new demand remains long enough at

its higher level to allow for the gradual adjustment in this way of

supply to the changed

conditions, and for the

economic forces called into

play once again to arrive

at a balance between

them, most likely at a

new equilibrium point.

The two figures illustrate

the difference in effect

according as the produc-

tion of the commodity is

ncreasing e urn
subject to a decreasing or

an increasing return, i.e. according as the cost of production rises

or falls when the amount produced is increased. In both cases it

will be noted that more of the commodity is produced (ON' in place

of ON) in answer to the keener demand, but the difference is much

greater in the second case than in the first. Also the jorice has

gone up in the first case, while in the second it has gone down,

the difference being measured by the change in PN.

2. EJfect of a Tax. If the Y

tax is at the rate of so much

per unit (say Is. per unit, if

the price is measured in shil-

lings) of the commodity pro-

duced, this will raise the

supply curve, S.C., bodily up

a distance of 1 unit into the

position S'.C, fig. (18), be-

cause the effect is the same

as if Is. were added to the

cost of each unit in produc-

tion. The production will

thus be diminished by N'N units, for P' is the new equihbrium

point ; the selling price will be increased by P'Ms per unit—by

less, it should be noted, than P'Q or K'K, the amount of the tax

;

producers' surplus, which is analogous to what economists term
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-en/, is diminished by (area KPL— area K'P'L')s ; consumers'

surplus is diminished by (area PLL'P')s ; finally, the tax produces

for the Treasury a number of shillings represented by a rectangle

with sides of length ON' and KK'.

3. Effect of a Monopoly. A monopolist has the power to stop

production short of the true equilibrium point, so that ON' cwts.,

fig. (19), are produced in place of the ON cwts. which free competi-

tion would demand. The selling price is thus raised by Q'Ss. per

cwt.
;

producers' surplus is increased by (area KP'Q'M'— area

KPL)s ; while consumers' surplus Y
is diminished by (area PLD— area

DM'Q')s.

A word of explanation is neces-

sary before leaving the subject of

these supply and demand curves.

It is probable that the reader will

have questioned the possibility of

draAving such curves for any com-

modity with sufficient accuracy to

be of any value, but it Avould be

enough as a rule to be able to estimate what would happen

if a slight variation occurred in price or in production, and such

an estimate may sometimes be made by actual trial : e.g. a good

practical farmer most Hkely knows nothing about supply and

demand curves as such, yet from past experience he has a pretty

shrewd notion as to how far it may be profitable to spend an extra

pound here in rearing calves and a pound less there in cultivating

crops, bearing in mind the prices which cattle and com might be

expected to fetch. From his point of view the interest of the

curves, if he knew anything of them, would be centred in those

portions which correspond to normal conditions, i.e. somewhere in

the neighbourhood of the equilibrium point under the free play of

ordinary competition.
'

Their real value, however, as suggested at the beginning, does

not consist in the practical assistance which they afford to the pro-

ducer or consumer, by way of foretelling the actual measure of

consumption or production, so much as in the fight they throw

upon general tendencies which are rather apt to be obscured if they

are ponderously presented with elaborate economic argument.

They make plain in a moment to the eye what can only be stated

in two or three pages of writing.



CHAPTER X

CORRELATION

One of the most important questions which can be discussed by

statistical methods is that of possible connection, or correlation, as

it is called, between two sets of phenomena. If some factor in

each can be isolated and measured numerically, our object is to

discover if the size of either is sympathetically affected when a

change occurs in the size of the other ; or, to put the matter in

another way, do large values of the one factor go with large values

of the other factor and small with small, or vice versa ? And, if

some mutual dependence of this kind exists, can an estimate of

its extent be made ?

Consider, for example, the factor or character of height in husband

and wife. Is there any connection between stature of husband (x)

and stature of wife (y) ? Do tall men tend on the average to wed

tall women, or do we find tall men choosing short women for wives

just about as often as they choose tall women ? When correla-

tion exists we shall want some measure for it which will tell us

the amount of change or devia-

tion from the average in either

character associated with a given

change or deviation from the

average in the other.

In studying graphs we saw how
some hint of the existence of

correlation might be discovered,

but we wish now to go a little

more deeply into the subject.

The first step is to measure an

adequate number of pairs of values, x and y, of the characters

concerned in order to find what values are associated together,

and how frequently the same values are repeated. When this is

done we can draw up a table of double entry, see fig. (20), setting

out in rows and columns the frequencies observed. An examina-

tion of Table (25), showing the variation of brain weight with age
102

-Vi .V, ^3 ^/

^1

-j;

^'f

Fig. (20).
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in the case of 197 Bohemian Avomen, Mill make clear what is meant.

The x's from x^ to a;^, and the i/s from y^ to y,^ are supposed to

ascend in magnitude, and when, for example, the pair of values

(^2> ^3) ^s observed to be repeated nine times, the number 9 is placed

in the second column and third row of the table, so that the frequency

of each class is found recorded in the square proper to it : thus,

out of the sample in Table (25), there are 10 women between the

ages of 40 and 50 with brains weighing between 1300 and 1400

grams.

Table (25). Variation of Brain Weight with Age in the

Case of certain Bohemian Women.

[Data from Biometrika, vol. iv. pp. 13 e^ seq.. Variation and Correlation

in Brain Weight, by Raymond Pearl.]

Age in years

^1

20-30

^2

30-40

^3

40-50 50-60 60-70 70-80 Totals

CO

J3

Si

-s:

5

.i
'5

y.

1000-1100
1

-
1 1

- - 3

1100-1200
2 2 4 2 5 4 19

^3

1200-1300
28 9 8 14 10 4 73

1300-1400 26 14 10 6 5 4 65

1400-1500 13 7 7 2 - 2 31

1500-1600
2 3 -

1
- - 6

Totals 72 35 30 26 20 14 197

Mean y 1325 1350 1310 1285 1250 1279

When each class interval, as in this table, includes a small range

of' values, the x and y may, as an approximation, be taken as the

mid values of their class intervals : y^ would be taken, for instance,

as 1250, though it really includes all values between 1200 and
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1300 grams. Strictly in such cases each suigle observation is not,

geometrically speaking, located at a definite point, but lies some-

where within a small area, though it is treated as if it had the values

X and y which apply to the centre point of the area. It is some-

times possible to correct for this assumption by what is loiown as

Sheppard's adjustment, but we shall not concern ourselves with

the correction in the present discussion, so as to avoid complications,

because the difference made is not generally large.

The table, when drawn up, may immediately suggest some

intimate connection between x and y. It may indicate that as

X increases y also in general increases, or that y tends to fall in

value as x grows bigger. But a more refined analysis is necessary.

It would be instructive perhaps to travel along the row of x's, find-

ing what mean value of y is associated with x^, what mean value

of y is associated with x^, and so on. This would give a sounder

basis for judging whether, as x increased, y in general increased or

decreased as the case might be : for example, in Table (25) the

m.ean values of y associated \\dth the several types of x are shown

in their proj^er columns at the foot of the table and clearly, as

X increases, y tends to decrease, apart from conflicting readings at

the beginning and end of the table, and the latter of these may not

be significant of any real difference in brain weight at the end of

life, for it is only based on fourteen observations
;

generally, the

inference from this table would be that the weight of the brain

decreases as the age increases after maturity is once reached,

although, of course, it would be rash to make more than a tentative

statement with so small a sample at our disposal.

Let us suppose
?/i

to be the mean value of y associated with x^,

y^ the mean value of y associated with x.^, y^ with x^, and so on.

If these values [x^, y^), (.To, y-z}, {^z^ Vs)' ^^'^' ^^^ plotted, it is very

often found that they cluster more or less closely about a straight

line, see fig. (21), so that we are led to ask whether there is not

some line which will very fairly describe the run of the points
;

the equation of such a line would be

y=mx-\-c,

and if m and c were known we could find from this equation the best

average value of y corresjoonding to any given x.

But, on reflection, ^u ^2' Vz • • - '""^^^ themselves only the best

?/'s corresjoonding to the particular values x^, x^, x^ . . . oi x, so

that the problem is really the same as that of finding the relation

y=mx-\-c,
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based on all the observations, which A\'ill enable us to estimate the

best y corresponding to any given x.

Now for any vahie x^ of x the value of y given by this relation

is (maJi+c), while by observation we may find more than one value

of y corresponding to the value x^ of x. If y^ be one such value

the difference between it and the value given by the above rela-

tion is

(mxi+c)— t/j.

This difference we may regard as the error made in estimating y

from the relation instead of taking the value given by observation

Y r> ' li, ' u IJj;li,v'Uwitig-theJ^eanBt-ein-|Vv^ig.^.o|
,

>
. asso :ia ;e d wlh vaiin,^ Ajiitypes
!s ^

1

s.

S
V

CO
'32^ * *S^

R 5
V :

c • N
5

^k
\

&> ^
^S. -

§ '275 ^.

^
s: V
e ^V

^y.
s
\̂.
>^ _

s, .

^w
>,

1220
O20 30 40 50 60

Age in years

Fro. (21).

70 80

which for the moment we think of as the true value. The best

relation will then clearly be the one wliich makes all such errors of

estimate as small as possible. But, algebraically, some of these

errors are positive, i.e. the value of y given by the relation is greater

than that given by observation, and some are negative, and it is

only their magnitudes that we wish to take into account. Accord-

ingly we follow the method used in finding the standard deviation

in order to get rid of the ambiguities of sign : we form, that is to

say, the sum of the squares of the errors, because the expression so

formed will clearly be least when each separate error is as small as

possible in absolute magnitude.
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To find, then, the values of m and c which will make

{mx^+c—y^f+{mx^_+c—y^Y-\- . . . +(m.r„+c— ?/„)2

a minimum (see Note 7 in th3 Appendix), where n is the total

number of pairs of observations.

The required values are given by differentiating, first with regard

to c treating m as constant, and then with regard to m treating c

as constant, putting each result equal to zero. Thus

(ma;i+c-?/i).ri+ . . . +(m.T„+c-v/„).x-„=0

Therefore m{Xi+ . . . +.r„)+wc— (?/i+ . . . +yn)=0

w(.V4- . . . -|-,r„2)4-c(.Ti+ . . . +xJ-{x^iji-\- . . . x„y„)=0.

The first of these equations gives

'm{nx)-\-7ic—{ny)=0,

i.e. J>.- mx-\-c—y=0,

where x is the mean of all the x's and y is the mean of all the y's,

and it expresses the fact that the line y=mx-\-c passes through

the point {x, y).

This might have been expected, for, graphically, each pair of

observations (a^i, ?/]), (a;2, 2/2)' (^3' 2/3) • • • corresponds to some point,

and if we look for the line y=^mx-\-c passing through the region

where they cluster most thickly together we should certainly expect

it to pass through their mean or centre of gravity {x, y). This

suggests how the values of m and c may be considerably simplified.

If we measure aU the x's from x, their mean, and all the ?/'s from y,

their mean, which is equivalent to taking the point {x, y) as origin

and replacing every x by its deviation f from x and every y by

its deviation '*} from y, the first of the above relations is reduced

to c=0. and therefore the second becomes

Hence

where p is the mean of all the product pairs |>/, and 0-3. is the standard

deviation of all the x's.

m(^,2+ . .

.

+^«')-(^i'/i+ •
• • +^„VJ=0.

w»=(^l^l+ . . . +LVn)l{L'+ • • . +in')

=nplnax^

=PI(Tx^,
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Thus the required equation for estimating the best >? correspond-

ing to any particular f is

whence y—y=— {x—x) . . • (1)

The coefficient pja^^ in this equation evidently gives the deviation

in y from the mean y corresponding to unit deviation in x from

the mean x, for when (a;— x)= l, {y—y)=p!(J^. Hence the greater

this coefficient is, the greater will be the change in y resulting from,

or at all events coexistent with, unit change in x.

Thus Jpjcrj' would seem to supply a not uiu'easonable measure of

the correlation between x and y. But there is something very

unsymmetrical about this result. Why should the correlation be

measured by pjcT,^ any more than by l^loy^ ? In fact, we might

repeat the whole of the previous argument, interchanging x and y
throughout wherever they appear. In that case we should first

travel down the column of y's and calculate the mean values of x

associated with yi- yi-, y^ . . . respectively. This would give a set

of points {xj^, y^), {x^^, y^), {x^, y^), . • . , which, when plotted, would

perhaps lie approximately in a straight line. We should thus be

led to look for some relation

x=m'y-\-c'

which would enable us to estimate the best average x corresponding

to a, y oi given type, and, proceeding just as before, we should

ultimately obtain the equation

or ^x-x)=l{y-y), . , . (2)

in which the coefficient J)l(^y~ gives now the deviation in x from the

mean x corresponding to unit deviation in y from the mean y.

Hence pfay^ has, seemingly, Just as much claim as j:)/^^;^ to measure

the correlation between a* and y. The one gives the change in x

corresponding to unit change in y : the other gives the change in y
corresponding to unit change in x ; and the only reason why they

differ is because unit change in x does not mean the same thing as

unit change in y : their standards of changeableness or variability

are not equal. If then we could alter the scales of measurement

so that unit change in each were of the same magnitude, the two

coefficients obtained ought to become identical, and we should then

have a really satisfactory measure for the correlation required.



108 STATISTICS

With this object let us examine the variabiUty of the x's and

compare it with the variability of the y's. Now the total dispersion

of the different x's on either side of x, the mean x, is conveniently

measured by a^., their standard deviation. And similarly the

dispersion of the y's on either side of y, the mean y, is measured

by cTy. The bigger CTj. is, the greater is the variability of the x's,

and the bigger ay is, the greater is the variability of the y's. Hence,

in equations (1) and (2), (x—x) should be divided by o-a; ^^^^ iy~y)
by ffy if we want to work with the same unit of change or variability

in each case. The equations then become

y-'—y\_ p /x—x\

^y I ^x^y^. ^x I

x—x\ p iy—y
and ' \

-f IJ J

Write r=p/(Tjfry ; then r is taken to be the coefficient of correla-

tion, for it measures the change in either character corresponding to

unit change in the other when the tmits are made comparable.

The lines giving the best y for a given x and the best x for a

given y may now be "wnritten

y—y^r-'ix—x)

and x—x~r-{y—y),
Oy

and they are called lines of regression. The term regression was

first used by Sir Francis Galton in a paper entitled Regression

towards Mediocrity in Hereditary Stature, though the root idea

is not by any means confined to characters affected by heredity :

it holds for any pair of correlated variables. Galton found that

if a number of tall fathers are selected and their heights measured*

the mean height being calculated* and if, further, the heights of the

sons of these fathers are measured, their mean height being like-

wise calculated, the latter is not equal to the mean height of the

selected fathers, but is rather nearer the mean height of the popula-

tion as a whole. There is, that is to say, a regression or stepping

back of the variable towards the general average. Professor Karl

Pearson has remarked that ' in the existing state of our knowledge

the recognition that the true method of approaching the problem

of heredity is from the statistical side, and that the most we can

hope at present to do is to give the probable character of the offspring
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of a given ancestry, is one of the great services of Francis Galton to

Biometry.'

The expressions r— and r— are called coefficients of regression,

and they register in the above particular case the amount of abnor-

mality to be expected in the height of the sons when the amount of

abnormality in the height of the fathers is known, and vice versa.

The regression of the sons' height, y, on the fathers' height, x, is, ^^j^i

in fact, defined as the ratio of the average deviation of the heights """^^

of the sons from the mean height of all sons to the deviation of the 5

heights of the fathers from the mean height of all fathers, and hence

it may be written y __

To make the definition more general, instead of speaking merely in

terms of height, we refer to any row or column—for there is no

intrinsic difference between row and column—in a table like

Table (25) as an array of ?/'s or of .f's, and selecting a particular

type, say a particular value of x (like fathers of height x), we define

the regression of the corresponding array of y's (like heights of sons

of these fathers) on the type x to be the ratio of the average devia-

tion of the array of y's from the mean y to the deviation of the

selected type x from the mean x.

Example. To illustrate, let us take some figures due to Professor

Pearson and Dr. Alice Lee [Biometrika, vol. ii. pp. 357 et seq., On
the Laws of Inheritance in Man]. Suppose the mean stature of all

observed fathers, based on a sample of over 1000 observations

= 67-68 in., with S.D.=2-70 in.

Also suppose the mean stature of all sons= 68-65 in., with S.D.

--2-71 in., and that the correlation r between stature of father

and stature of son=0-5 14.

The regression of son on father as regards stature is then given by

(;?/-68-65)=(0-514)^— (.r-67-68)

where x is the height of selected fathers and y the mean height of

their sons.

Hence ?/-:0-516x+33-73,

so that if we selected fathers of height 70 in., for example, the

mean height of their sons would not be 70 in., but

(0-516)(70)+33-73=69-S5 in.,
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i.e. there is a regression towards the general mean, 68-G5 in., of

all sons.

Also the coefficient of regression

= (0-514)(2-71)/(2-70)

=0-516.

It is not difficult to show that the greatest numerical value r

can in general take is unity, for consider the expression for the

sura of the squares of the differences between the observed devia-

tions of the y characters from their mean and the corresponding

deviations as deduced from the best fitting regression line,

y—y=r^{x—x).

If, with our previous notation, '/ denote the observed deviation of

the one character y, associated with a particular deviation, f, of

the other character, x, then, since {rayja^)^ denotes the best value

given by the line, the sum of the squares of the differences between

these values

=(V+ • • • +'/«'')-2r- (^x^i+ . . . +|„VJ+r^—,(1,2+ . . . +|„2)

2

=nay^—2r-^{nra^ay)-^r^^{na^^)

= ?icr/(l— r^).

Since the sum of a number of squared quantities must be positive,

it follows that r^ must be less than I and hence r lies between —

1

and -fl.

Further, n<jy^{l— r^) can only vanish if every one of the squared

quantities on the other side vanishes independently of the rest,

so that we only get r=±l, when

'}ilii=''hlL= ' - =''1nlL=ray!a^.

In this case the deviation of the one character from its mean is

always exactly proportional to the deviation of the other character

from its mean, and the correlation is then said to be perfect, for

it is equivalent to causation. In perfect correlation a one-to-one

correspondence thus exists between the values of the two char-

acters, for to one value of either there corresponds one and only

one value of the other and the standard deviation of the array
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(measuring its variability) corresponding to any selected type

vanishes.

Zero correlation is at the opposite extreme where, no matter

what the type selected in the one character may be, the mean
value of the array in the second character is unaffected, because

the two characters are quite independent or uncorrelated ; the

deviation of y from its mean bears no relation at all to the deviation

of X from its mean, and unit change in either is associated with no

particular change in the other, so that r must in this case be zero.

When r is negative, since {y—y)j{x—x)= rayj(jx and the ct's are

necessarily positive, corresponding to any value of x above the

mean of all the a;'s the best value of {y—y) is negative, that is, the

best value of y is below the mean of all the y's, and vice versa.

This means that in general high values of x would be associated

with low values of y, and vice versa.

If we take the mean as origin so that the regression lines become

y=rayla^ . x,

x=rajay . y,

these lines coincide with the axes when the correlation is zero,

and with one another when r=±l and the correlation is perfect,

fig. (22). Given two equally

variable characters [a^^^ay) and

perfect correlation, the regres-

sion lines coincide with one of

the bisectors of the angle formed

by the axes.

It may be helpful to look back

again now at the graphical view

of the argument leading up to

the determination of the co-

efficient of correlation. For

successive values of x we calculated the means of the several

2/'s observed, these being presumably the best available ?/'s corre-

sponding to the particular a;'s selected, and we assumed that,

when plotted, the points so obtained, {x^, y^), {x2, y^), (^3, 2/3), • • •,

lay roughlj' in a straight line. In the same way we calculated the

means of the several a:'s observ^ed to correspond to particular y's,

selected, and again we assumed that the resulting points, {x-^^, y^),

{xo, y-i), (^3, 2/3) •• • lay roughly in a straight line. These assump-

tions are justified in very many cases, but when they fail recourse

must be had to other methods beyond the scope of this book. [See

(Mean) X
degression Lines when

Correlation is perfect (r=+i)

Fio. (22).
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for example, Pearson's paper in Drajpers' Company Research Memoirs

Bionietric Series ii., On the Theory of Skew Correlation atid Non-

linear Regression, introducing the correlation ratio, v. which is

equal to r in the particular case when the regression is Unear.]

Sometimes, again, although the observations are so scattered that

the assumption of a straight line to describe the best fit seems

somewhat wide of the mark, it may be justified on the ground that

no better graphical result would be given by using any other curve

in place of the line. Moreover the linear expression, y=--mx-\-c,

is simple and may serve to give at all events the first two terms of

some more complex relation supplying an estimate for the most

probable y corresponding to a given x.

If we had plotted all the original pairs of observations, instead

of plotting certain x's and the mean y's associated with them, or

certain y's and the associated mean

x's, the two lines of regression would

not have stood out so clearly : they

would have lacked definition, like an

optical image which is not strictly in

focus, but there would have been a

concentration of observations, as of

light, in the neighbourhood where the

lines of regression intersect, namely

at {x, y), the mean of all the x's and

all the y's. When, however, the lines of regression lie close together

they become more clearly defined, all the observations being centred

then more nearly in one line, and the correlation tends towards

perfection. Such cases are frequent in Physics but rare, if found at

all, in that class of Statistics into which the element of human
impulse enters. When r is less than 1 the lines of regi'ession, if the

regression is of linear type, will be inclined to one another at some

angle between and 90 degrees.

If only a rough value of r, the correlation coefficient, is required,

that may be obtained by merely estimating the gradient of each

regression line and multiplying the results together, one measured

relative to the axis of x and the other relative to the axis of y,

for this product

= (regression of y on x) (regression of x on y)

/a,= r-
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Such an estimate may also be useful, though it may not be very

dependable, when the complete distribution of characters is not

known, for either regression line can be drawn when any two points

on it are known and a single array of values of either character

corresponding to a given type of the other is sufficient to fix one

such point ; also the mean {x, y), if it were known, would at once

give a j)oint common to both regression lines. When all the facts

are available, however, the method of calculation is to be preferred

to that of simply graphing tlie observations and their means, as there

is bound to be a certain amount of guesswork and consequent error

in deciding from a graph how the best regression lines run.

It is frequently convenient to refer the deviations of the given

variables to some jDoint other than the mean {x,y) as origin, and,

when this is done, a correction

must be applied to the resulting

value of r. We have already

explained how, in such a case,

to correct for standard devia-

tions, and, as r^ployPy, it only

remains to explain how to cor-

rect for ji-

Now i^t is given by

where the |'s and '/'s denote deviations from x and y respectively.

Fig. (23) indicates the changes necessary in transferrmg from some

origin to the mean G. The co-ordinates of P (representing a

typical observation) referred to are {x, y) and referred to G are

(^, ,]). Also the point G itself referred to is {x, y). Thus

^=-x—x, v-^y-y,

and np becomes

{xi-x){ij^-y)+ . . . -^{x„'-.f)iyn-y)

= {x^yi-xy^-yXi^xy)-\- . . . +(a;„y„-%„-j^a:n+a:^)

= (:c3t/i+ . . . -\-x^y,,)-x{y^-\- . . . +y„)-^(.^i+ . • . +.Tj+ na-j/

= (Xi2/i+ . . . +x„yj-x.ny-y .nx-\-nxy

=Z{xy)—nxy,

where S{xy) denotes the sum of expressions of the type xy.

Hence the corrected value of 2?

^E{xy)jn-xy,

H

Y y'

G

J'

X

•

P

^ :

X-

y

O ^ -X >- X

Fig. (23)
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from which we infer that the corrected value of r is

E{xy)—nxy

We proceed to a few appUcations of these results in the next

chajDter.

[As early as 1846 a French physicist, Auguste Bravais, had conceived the

surface of error as a means of describing in space the path of a point whose x

and y co-ordinates are subject to errors which are not independent ; but it

appears to be doubtful whether he saw the connection between his work and
the subject of correlation. It was Galton, nearly forty years later, who
really created that subject, introducing the coefficient of correlation on graph-

ical lines and giving practical examples of its use. (See Biometrika, vol. xiii.,

pp. 25-45, Notes on the History of Correlation.)

Edgeworth, in 1892, using Galton's function, independently reached some
of Bravais' results related to the correlation of three variables, and showed
how they could be extended. Karl Pearson, in 1896, contributed to the

Royal Society Transactions a fundamental paper on the subject, with special

reference to the problem of heredity, drawdng attention to the best value of

the correlation coefficient, and how it should be calculated. (See Appendix,

Note 11.) Yule, returning in the following year to Bravais' formulae, showed
their significance also in the case of skew correlation.

Pearson afterwards developed a method of determining the correlation of

characters not quantitatively measurable, and in a discussion of the general

theory of skew correlation in another paper he proposed a new function, the

correlation ratio, applicable to the case of non-linear regression.]



CHAPTER XI

CORRELATION EXAMPLES

Example (1).—To find the correlation between Differences in Whole-

sale Price Index Numbers and in the Marriage Rate from their corre-

sponding Nine-yearly Averages during the twenty years, 1889-1908.

using tlie data given on p. 77.

Table (26). Correlation between Differences in Wholesale

Prices and Marriage Rate from their respective Nine-

yearly Averages.

(1) (2) (3) (4) (5) (6)

Year.
Difference in

Prices from
Square of

No. in

Difference in

Marriage-rate
from 9-yearly

Average.

Square of

No. in

Product of Nos.
in Col. (2) and

9-yearly Average. Col. (2). Col. (4). Col. (4).

{X) (x2) (Z/) ir) (^.y)

1889 + 0-9 0-81 + 1 1 + 0-9

1890 + 2-3 5-29 + 6 36 + 13-8

1891 + 7-0 49-00 ' + 6 36 + 42-0

1892 + 2-4 5-76
! + 3 9 + 7-2

1893 + 2-0 4-00 - 6 36 -12-0
1894 - 2-8 7-84 - 5 25 + 14-0

1895 - 4-3 18-49 - 6 36 + 25-8

1896 - 6-1 37-21 + 1 1 - 61
1897 - 3-7 13-69 + 3 9 -11-1

1898 - 0-2 004 + 4 16 - 0-8

1899 - 1-6 2-56 + 6 36 - 9-6

1900 + 5-3 28-09 + 1 1 + 5-3

1901 + 1-0 1-00

1902 - 0-5 0-25 + i 1 - 0-5

1903 - 1-4 1-96 - 1 1 + 1-4

1904 - 1-3 1-69 - 3 9 + 3-9

1905 - 2-4 5-76 - 2 4 1 + 4-8

1906 - 0-5 0-25 + 3 9 - 1-5

1907 -f 3-2 10-24 + 6 36 + 19-2

1908 - 1-8 3-24

197-17

- 2 4 + 3-6

-f 241 -26-6 +41-25 306 + 141-9-41-6
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The arithmetic is comparatively simple in this case because

there is only one value of each variable corresponcUng to each year,

so that there is no weighting or grouping to complicate the analysis.

The variables x and y, between which we wish to find the correlation,

appear in col. (2) and col. (4) in Table (26), and the positive and

negative differences are sej)arated from one another in each case

so as to make their summation easier.

Thus for the arithmetic mean of the numbers in col. (2), wc have

.r=(+24-l-26-6)/20=-0-125
;

and for the mean of the numbers in col. (4), we have

^=(+41-25)/20=+0-8.

The straightforward procedure would now be to get the twenty

corresponding values of ^ and V, the deviations of the twenty x's

in col. (2) and of the twenty y's in col. (4) from x and y respectively,

and, having found o-j, and Gy, we could immediately deduce r from

the formula

= (fi^i+ . . . +f2o^/2o)/20a^a,„.

But it is simpler to measure the deviations from (0, 0) as origin

rather than from the mean (—0-125, +0-8), because x^, y^, and xy

involve fewer significant figures than would ^^. v'^, and f v, and,

of course, it will be necessary to correct for this at the end in the

usual way.

The mean square deviation of x referred to zero as origm

= 197-17/20, by col. (3).

Therefore, cr^^^ 197-17/20- (0-125)2=9-843

a, =3-14.

Again, the mean square deviation of y referred to zero as origin

= 306/20, by col. (5).

Therefore, ct/= 306/20- (0-8)2= 14.66

(7^=3-83.

Also the coirected p
= {Exy)ln—xy
= 100-3/20- (-0-125)(+0-8), by col. (6)

=5015+0-100
= 5-115.

Hence f—Vl^^x'^v

= 5-115/(3-14)(3-83)

=0-43.
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It is necessary to be careful with the signs in forming the numbers

in col. (6), but otherwise the actual calculation should present no

difficulty.

The regression equation giving the best marriage rate difference,

Y, for a given wholesale price difference, X, from their respective

nine-yearly averages is

(Y-0-8)=r^^ . (X+0-125)

= (0-43)^--—\x+0-125)
(3-14)

i.e. Y=0-52X+0-86.

The regression equation giving the best wholesale price difference,

X, for a given marriage rate difference, Y, from their respective

nine-yearly averages is

(X+0-125)=r^ . (Y-0-8)

=0-35(Y-0-8)

i.e. X=0-35y-0-40.

We noted that fig. (10), p. 80, suggested a closer correlation

between the two factors we have been considering during the

earlier years of the period 1875-1908 than during the later years.

It might be worth while as an exercise to see if this is borne out

by calculating r for the years 1875-1889, and comparing it with

the value found for the years 1889-1908.

Example (2).—To find the correlation between Overcrowding and

Infant Mortality in Lotidon Districts. [Data taken from London

Statistics, vol. 23, published by the London County Council.]

The figures are apparently based ui^on the Census Report of

1911. The numbers in col. (2), Table (27), show what percentage of

the total population occupying private houses in each district were

living in overcrowded conditions, any ordinary tenement which

has more than two occupants to a room, including bedrooms and

sitting-rooms, being defined as overcrowded. The numbers in

col. (5) show the infantile mortality in each district, that is, the

number of infants who died under one year out of every 1000

bom, including both sexes.

For the sake of comparison these numbers have been plotted

together on the same graph sheet. The districts, arranged in

alphabetical order, were numbered from 1 to 29 so as to form a hori-

zontal scale corresponding to the scale of years in discussing prices

and marriages. The scale in this case is, of course, purely artificial,
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and the only reason for joining up neighbouring points is that we are

better able by so doing to see whether or not high values of the one

variable go with high values of the other variable, and low with low.

In calculating the mean and standard deviation for overcrowding

we have measured deviations from 17-0 as origin, and in making the

same calculations for infant mortahtj' we have measured dela-

tions from 125 as origin. It is convenient, therefore, to use the

point (17-0, 125) as origin in working out also the product deviation

sum, col. (8) of Table (27), instead of using the mean (17-86, 126).

Table (27). Correlation between Overcrowding and

Infant Mortality in London Districts (1911).

(1) (2) (3) (4) (5) (6) (7) (8)

Per-
centage

of
I 1

Deviation of j Square Infant ; De\iation of
Square
of No.

Product of Nos.
District. Popula- No in Co\. (2) ' of No. in Mor- No. in Co .(5) in Col. (3) and

tion
Orer-

from 17 '0. CoL (3). taUty. from 125.
in

Co1.(6)l
Col. (6).

crowded

M («/)

(1) Battersea

.

13-3 - 3-7 1-3-69 124 1 1 + 3-7

(2) Bermondsev 23-4 -i- 6-4 40-96 156
; + 31 961 + 19S-4

(3) Bethnal Green

.

33-2 -1- 16-2 ' 262-44 151 + 26 676 -f 421-2

(4) Camberwell . • 13-5 - 3-5 12-2.5 109 - 16 2.56 + 56-0

(5) Chelsea . 14-9 - 2-1 4-41 109 - 16 256 '
33-tJ

(6) City of London 12-3 - 4-7 22-09 124 _ 1 1
289'

+ 4-7

(7) Deptford . 12-2 - 4-8 23-04 142 17 - 81-6

(8) Finsburv . 39-8 + 22-8 519-84 1.56 31 961 -I. 706-8

(9) Fulham" . 14-6 - 2-4 5-76 125

(10) Greenwich 121 - 4-9 24-01 128 -L.
3' "9 "- 14-7

(11) Hacknev . 12-4 - 4-6 21-16 119 _ 6 36 27-6

(12) Hammersmith . 14-2 - 2-8 7-84 146 + 21 441 - 58-8

(13) Hampstead 71 - 9-9 98-01 78 - 47 2209 + 465-3

(14)Holborn . 25-6 + 8-6 73-96 115 - 10 100 - 86-0

(15) Islington . 20-0 + 3-0
1

9-00 127 + 2 4 -f 6-0

(16) Kensington 17-1 + 0-1 0-01 133 + 8 &4 -f 0-8

(17) Lambeth . 13-6 - .3-4 11-56 123 - 2 4 -L. 68
(18) Lewisham. 3-9 - 1.3-1 171-61 1 104 '

- 21 441 J- 275-1

(19) Paddington 16-2 - 0-8 0-64 127 -f
o 4 - 1-6

(20) Poplar . 20-6 + .3-6 12-96 157 -f 32 1024 -1- 115-2

(21) St. Marylebone 20-7 + 3-7
i

13-69 108 - 17 289: - 620
(22) St. Pancras . 25-5 + 8-5 ' 72-25 112 — 13 169 -110-5

(23) Shoreditch 30-6 -1- 19-6 384-16 170 -r 45 202;5 -f 882-0

(24) Southwark 25-8 O- 8-8 77-44 144 + 19 361 -T 167-2

(25) Stepney 35-0 + 18-0 324-00 144 + 19 361 + 3420

(261 StokeNewington 8-8 - 8-2 67-24 102 _ 23 529 + 188-6

(27) Wandsworth . 6-3 -10-7; 114-49 122 — 3 9 -f- 321
(28) Westminster . 12-9 - 4-11 16-81 103 — 22 484, + 90-2

(29) Woolwich. 6-3 -10-7| 114-49

'<

97 "" 28 784 + 299-6

+ 119-3-94-4 2519-81

i

+ 2.56- 226 12748 + 4322-9-416-1
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For overcrowding,

mcan= 17+24-9/29= 17-86
;

c^x= V[ (2519-81/29)- (0-86)2]= v'(86-15)=9-3.

For infant mortality,

mean=125+30/29= 126-03;

a„==V[(12748/29)-(l-03)2]=V438-5=20-9.

Ahop, referred to (17-0, 125)=(4322-9-416-l)/29-3907/29, and,

referred to the mean (17*86, 126-03), this becomes

= 3907/29- (0-86)(l-03)

= 133-8.

Hence /•=133-8/(9-3)(20-9)=0-69.

so that the correlation between overcrowding and infant mortality

is fairly marked.

1 12 13 14 15 16 17 13 19 20 21 22 23 24 25 26 27 2S 29

Numbers representing various London Districts

Fu>. (24).

The regression equation giving the average infant mortality, Y,

for districts in which the extent of overcrowding, X, is known is

¥-126-03= :r'-'(X- 17-86)

Ox

(0-69)(20-9)(X- 17-86)
9-3

i.e. Y=l-55X+98-4.

Similarly, the regression equation giving the average j)ercentage

of overcrowding, X, for districts with a known amount of infant

mortahty, Y, is

X- 17-86=r'^^(Y- 126-03)

t.e.

= 0-31(Y-126-03)

X=0-3iy-21-0.
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Example (3).—The reader might apply the same method to the

determination of the correlation between Ratio of Indoor Paupers

and Ratio of Outdoor Paupers, each measured per 1000 of the esti-

mated PojJulation in England and Wales, excluding casuals and

insane, during the years 1900-1914. The following are the statistics

required for the purpose :

—

Table (28). Correlation between Ratio of Indoor and Ratio

OF Outdoor Paupers, each measured per 1000 of the

Population.

Indoor Outdoor Indoor Outdoor
Year. Paupers

—

Paupers

—

Year. Paupers

—

Paupers

—

Rate per 1000. Rate per 1000. Rate per 1000. Rate per 1000.

1900 6-9 15-8 1908 6-8 15-4

1901 5-8 15-3 1909 71 15-6

1902 60 15-3 1910 7-2 151
1903 6-2 15-4 1911 7-2 141
1904 6-3 154 1912 6-9 11-2

1905 6-6 161 1913 6-7 111
1906 6-8 160 1914 6-4 10-4

1907 6-8 15-6

The coefficient of correlation in this case comes out negative

and =— -15, but it is very small and probably not significant.

If it were, it would imply that as indoor pauperism diminishes

outdoor pauperism increases, and vice versa.

Example (4).—To find the correlation between the Number of

Cattle and the Number of Acres of Permanent Grass-land in the Coal-

Producing Counties of England (1915).

A Government Report was consulted giving the acreage under

crops and grass and the number of live stock in each petty sessional

division in the country, as returned on 4th June 1915, and the

counties included were those which appear in the coal-mining

reports published monthly in the Labour Gazette.

In each county the petty sessional divisions with the greatest

and the least numbers of cattle and of acres of grass-land were

noted, the numbers being written down to the nearest 1000, and,

after a rough examination of the range of these variables from

county to county, suitable class intervals were chosen and a table

of double entrj^ was drawn up, Table (29), Avith an empty square

ready for each possible pair of variables.
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Table (29). Correlation between the Number of Cattle

AND the Number of Acres of Permanent Grass-land in

the Coal-Producing Counties of England (1915).

Total Head of Cattle (expressed to nearest thousand)

x^ ^2 ^3 X^

0-5 5-10 10-15 15-20 20-25 25-30 30-35 35-40 Totals Mean x

: lo

y^ :: '5 15 2-50

0-5 : : 150

^2
; : ,9

! ! :27

4

3 30 3 00

T3

5-10
: :

'."(>
: iz

^3
! : : 6

I i
-30

I: 3

:: 18 48 4-37

a
CO

o

10-15 I i :i8o :: 54

4

3
: : : 2

i j :30 33 7-04

So
CO

15-20 ; 12 \\\6o

'. '• *

: : :25 : 5 30 8-33

20-25 1 : i^S ;

: ° •

CO

1 : . 14 : 9 2 26 9-81

25-30 • : : S ;

-I

: 6
i i

: : 22
I

3 31 12-02

30-35 : -6 : : '.° •: 3

-2 : 2 4

1 : 12 : 6 . 4 23 15-33

a 35-40 -2
: : i '^ : 16

CO 3 9

i3
3 . 4 1 8 16-87

c5
HO

40-45 : ; 12 . 9

4 8 16

to 3 3 3 1 10 1900
45-50 ; : 12 : 24 . 16

5 10 15

CI. . 4 . 4 1 9 20-83

•^ 50-55 : 20 : 40 . 'S

6 12 24 30

^ 1 2 1 1 5 26-50
55-60 . 6 : 24 . 24 . 30

21

1 1 27-50

o
5

"a

»2

60-65 . 21

24

1 1 27-50

65-70 . 24

27

1 1 27-50

70-75 . 27

40

3 3 32-5

75-80 1 120

n 22
^? 1 1 2 20-0

80-85 . " . 22

Totals 76 97 54 24 14 5 5 1 276

Mean y 9 14 2013 33-24 43-33 50-00 59-50 67-50 57-5
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Each petty sessional division was then considered in turn and a

dot was inserted in the particular square applicable to it : e.g. a

petty sessional division with 42,000 acres of grass-land and feeding

19,000 cattle would be represented by a dot in the square defined

by row (40-45) and col. (15-20) in Table (29) ; x was used to repre-

sent the number of cattle and y the number of acres of grass-land

in any division, each expressed to the nearest 1000 units. All the

dots were ultimately added in each square giving the frequency

for each corresponding pair of variables, and these frequencies were

recorded in the centres of the squares to which they applied : e.g.

the frequency of petty sessional divisions stocking 10 to 15 thousand

cattle and with 30 to 35 thousand acres under permanent grass

was 22. The total frequency for each row, i.e. each array of

selected y type, was also noted, in the column at the end of the

rows : e.g. altogether 31 petty sessional divisions were observed of

the type having 30 to 35 thousand acres of land under permanent

grass. Likewise the total frequency for each column, i.e. each

array of selected x type, was noted in the row at the foot of the

columns : e.g. altogether 54 divisions were observed of the type

stocking 10 to 15 thousand head of cattle.

It was possible now to treat each column separately and to

calculate the mean y's associated with different types of x, namely

x^, x^, x^, . . . , and the frequencies so obtained were inserted in

the bottom row of Table (29) : e.g. when x lies between 20 and 25

thousand, the mean value of y is 50 thousand. The resulting

points— (a^i, y^), [x^, y^), {x^, Pa) • • in the notation of Chapter x.

—

are plotted together in fig. (25), and they are seen to lie approxi-

mately in a straight line. The successive rows were treated in

precisely the same way and the mean x's calculated corresponding

to y's of cUfferent types, namely y^, y^, y^, . . . , the frequencies

obtained being recorded in the extreme right-hand column of

Table (29) : e.g. when y lies between 45 and 50 thousand, the mean

value of X is 19 thousand. The resulting points {x-^, y^), {x^, y^),

(^3> 2/3). • • • . are also plotted in fig. (25), and, excepting for values

which depend upon only one or two records, they too lie roughly

in a straight line which is not far from coinciding with the previous

one, so that we shall expect on calculation to get a high value for

the coefficient of correlation.

In order to calculate r we need first to find the mean and standard

deviation for each variable. For this let us take as origin the

point (12-5, 27-5). The essential details are shoAvn immediately

below the relative Tables (30) and (31).
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TABiiE (30). Distribution of Petty Sessional Divisions ac-

COKDING to the HeAD OF CaTTLE (EXPRESSED TO NEAREST

1000) STOCKED.

(1) (2) (3) (4) (5)

No. of Cattle Devia- No. of Pettv Product of Product of

stocked (in tion from Sessional Nos. in Nos. in

thousands). 12-5. Divisions. Cols. (2) .t (.3). Cols. (2) & (4).

(x)

0-5 _2 76 -152 304
5-10 -1 97 - 97 97
10-15 54 .

.

15-20 + 1 24 + 24 24

20-25 + 2 14 + 28 56
2.5-30 + 3 5 + 15 45
30-35 + 4 5 + 20 80
35-40 + 5 1 + 5 25

276 -157 631

Mean number of cattle=12-5—17^x5=9-66, since x=— wjl class

units referred to 12-5 as origin; and (Tx=5\/[iTw~{^^i)^]

= 5\/l'963=7-00.

[The numbers in col. (4) may be spoken of as the first moments

of the totals of x arrays and the numbers in col. (5) as the second

moments.]

In order to calculate easily the product deviation with reference

to (12-5, 27-5) as origin, the value proper to each square was inserted

just above the frequency and the product of the deviation by the

frequency was inserted just below the frequency in different type of

print to prevent confusion : e.g. the row (50-55) is +5 class intervals

distant from the row (25-30) containing the origin, and the column

(20-25) is +2 class intervals distant from the column (10-15) con-

taining the origin ; hence, for the jDarticular square defined by this

row and this column, the product deviation=5x2=10 ; also

the frequency recorded in this square=4, so that it supplies a

term 10 X 4 to the product deviation ; the numbers 10, 4, and 40

are therefore the numbers Avhich appear in the square. It is neces-

sary to be careful with the signs ; if the product deviation is to

be positive, the separate deviations must be of like sign, both

positive or both negative : hence they must either be both above

or both telow the numbers 12-5 and 27-5 respectively from which
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they are measured. In this instance there are only two negative

terms among the product deviations in the whole table.

Table (31). Distribution of Petty Sessional Divisions ac-

cording TO THE Number of Acres of Land (expressed to

nearest 1000) under Permanent Grass.

(1) (2) (3) (4) (5)

143
2T^Mean number of acres=27-5—^7^x5=24-91, since y

class units ; and CTj,=5V[W/-(i4|)2]=5\/l04()2= 16-12.

[The numbers in col. (4) are the first moments of the totals of y
arrays, and the numbers in col. (5) are the second moments.']

It is now a simj^le matter to sum the j)roduct deviation terms,

taking each column (or each row) in turn : e.g. the first column

gives

150+216+180+12= 558
;

the second column gives

12+54+60+25-6-2=143,

and so on ; and, summing these results together, we get

558+143+76+126+96+160+30=1189.
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But this is the sum of all the product deviations referred to

(12-5, 27-5) as origin. Transferring now to the mean, we have

118 9 / 157 w 14 3

v

=4-013, expressed in class units.

Hence, r=plax(Ty,

where a^ and (jy are also to be expressed in class units,

=4-013/ V(l-963)-v/(10-402)

-=0-89,

a result not far from unity, so that the correlation is high.

The regression of ' acreage of grassland ' (Y) on ' head of cattle
'

(X) is given by

(Y-24-91)=A(X-9-66)

= (0.89)y^\x-9-66),
(7-00)

i.e. Y=2-05X+5-ll.

The points representing the mean y's for x's of different types

should lie close to this line which is shown in fig. (25). This equation

enables us to jaredict the acreage under permanent grass to be

found on the average in petty sessional divisions with a given total

head of cattle in each. The words ' on the average,' to be tacitly

understood even if not stated in all such cases, are emphasised

because the prediction relates to the whole array of divisions of a

particular type, and as it only professes to give the mean or most

likely result it is not to be pronounced worthless if it fails in an

individual trial with a selected division.

Again, the regression of X on Y is given by

(X-9-66)=r^(Y-24-91)

i.e. X=0-39Y+0-05,

which tells us the total head of cattle (X) to be found on the average

in petty sessional divisions when the acreage under permanent
grass (Y) is known. This line is also drawn in fig. (25).

Example (5).—The data for this example are taken from an
exceedingly interesting Government Report on the Cost of Living

of the Working Classes {Rej)ort of an Inquiry by the Board of Trade

into Working Class Rents and Retail Prices together with the Rates
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of Wages in certain Occupations in Industrial Towns of the United

Kingdom in 1912 in continuation of a similar Inquiry in 1905.
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Fio. (25).

Cd. 6955). Some further particulars concerning this Report will

be found on p. 281.
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The towTis included in the inquiry' numbered 93, but in five

instances it was found desirable to consider closely adjacent muni-

cipalities as single toAvus thus reducing the number of to"WTi-units

to 88, namely 72 in England, 10 in Scotland, and 6 in Ireland. In

the example which follows the three zones of London, middle,

inner, and outer, have been treated as separate towns, so making

the net number of town-units 90. This number is too small to

allow any real value to be attached to our results, but the fewTiess

of the observations makes them easier to deal with as an illustration

of method.

We begin as before by choosing convenient class intervals for

the two factors we propose to consider, namely. Increment of Un-

skilled Wages and Increment of Rents—by increment in each case

is meant the percentage increase (+) or decrease (— ) between

1905 and 1912—and then form a correlation table. In the last

example separate tables were drawTi up to find means and S.D.'s,

but that was only done in order to keep the argument clear at its

first presentment : generally we may dispense with these additional

tables and show all the working in one (see Table (32)).

The increment of wages runs from (— 2-5) per cent, to (+11-5)

per cent., so that, if we take (—0-5) as origin and a difference of

2 per cent, as miit, the classes run from (—1) to (+6), these numbers

being sho^vn in different type in the table, but in the same com-

partments as the others. In the fourth row from the bottom

are shown the total frequencies for x arrays from class (—1) to

class (+6), and in the row just below it these several frequencies

are shown multiplied by their corresponding deviations measm-ed

from (—0-5) as origin in terms of the class unit—the resulting

numbers give the first moments of the totals of x arrays. These

numbers, multipHed again by their corresponding deviations, give

the second moments of the totals of x arrays, and appear in the

last row but one of the table.

We deal in exactly the same way with increment of rents : a

percentage increment of (— 1) is taken as origin from which devia-

tions are measured, a difference of 3 per cent, is taken as unit,

and the different classes then have deviations running from (—3)

to (+6). The totals of y arrays, the first moments, and the

second moments of these totals appear in the last three columns

on the right-hand side of Table (32).

To calculate the deviation products, numbers were inserted in

each square on the same principle as in the last example, and the

sums of these products for each x array, that is for each column,
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are given in the bottom row of the table—1, 0, 14, 6, etc., making

in all a total of 126.

Table (32). Cokeelation between Increment of Unskilled

Wages and Increment of Rents in certain Industrial

Towns of the United Kjngdom.

X = Percentage Increment of Wages

-I

-2-5 -0-5

f 1

1-5

+ 2.

3-5

+ 3

5-5

+ 4

7-5

+ 5

9-5

+ 6

11-5

Totals

of y
arrays

1st.

mo-
ments
ofy

arrays

2nd.
mo-
ments

ofy
arra'is

CO -3 -10
o

1

o
1 -3 9

eg

CO
CO

-2 -7
2

1

2

o

3
o

4 -8 \6

CD

-I -4
o

4
o

-I

1

-I

-2

2
-4

-4

1

-4

-5

1

-5

-6

1

-6
10 -10 10

O -1

o

15
o

o

1

o

o

6 6
o

2 30 - -

+ 1 2
-I

1

-I
9
o

I

1

I

2

3
6'

4
3
12

5
1

5

18 18 18

i
+ 2 5 6

o

2

1

Z

4
1

4

8
1

8

10

2
20

11 22 44

+ 3 8
o

3
o

3
4
12

9
1

9

12

1

12

IS
2
30

11 33 99

+ 4 11

o

3
o

3 12 48

1 +S 14

o

1

o
1 5 25

ih
+ 6 17

24

1

24
1 6 36

Totals of X arrays 2 45 8 12 7 7 8 1 SO 75 305

7st. moments of
X arrays

-2 - 8 24 21 28 40 6 125

2ncL moments of
X arrays 2 - 8 48 63 112 200 36 469

Product Sums of
X arrays

1 14 6 9 52 50 -6 126 Total Product Sum

The necessary calculations are as follows :

—

1. Mean a;=-0-5+2(125)/90=2-28,

a^=2v'[-*9V-(-V(r)2]=2V(26585)/90.

2. Mean ?/=-l+ 3(75)/90=- 1-50,

<^v=3V[%V-(H)2]=3V(21825)/90.

3. p=V/— (V(f)(if)= , expressed in class units.
(90)
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Hence r=pla^ay

1965
X

90
X

90

(90)2 y^(26585) V(21825)
=0-08.

In substituting for o-j. and ay to find r we have omitted the factors

2 and 3 respectively, because the S.D.'s have to be expressed in

the same units as p. Alternatively, if we worked Avith a difference

of 1 per cent, as unit, instead of taking a difference of 2 per cent,

as unit for x deviations, and a difference of 3 per cent, as unit for

y deviations, each individual product of x and y deviations would

Y 1'\
~ -1 ~

-r.
('1

6

- - -
<o

c
cgs
«<-,

•4.J --- -
§4

-

s:"~3

&
c
c
p2 (J

l)

- _ n
CJ - ^_ —

1

Q, - _,__
»"

Ivl(2-.^8,! b)
"^

r-

-

^_ _ _ _ _ _ _ _ __
O 12 3 4 5

Percentage Increment of Wages

Fig. (26).

have to be multiplied by 2 x 3. Thus p would then be 6 X 1965/(90)2,

and we should get the same result for r as before by taking 0^.

and ffj, as in (1) and (2) above. In this case r is so small as to be

quite insignificant of any correlation between the two factors dis-

cussed, and the regression lines should therefore be not far from

perpendicular to one another.

The regression of y on x, or the equation giving the most probable

y for a given type x is

(t/-l-50)=r^(a;-2-28),

i.e. t/=0-lIa;+l-25.

I
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Similarly, the regression of x on y is

.T=0-062/+2-2.

To draw the first line we note that it passes through the points

(0, 1-25) and (5, 1-8) ; also the second line goes through the points

(2-2, 0) and (2-5, 5). The two lines intersect at M (2-28, 1-5), the

mean of the distribution. They are drawn together in fig. (26).

Table (33). Correlation between Unskilled Wages
AND Rents in certain Industrial Towns of the
United Kingdom.

x= Index Number for Wages of Unskilled Labour

45-5 51-5 57-5 63-5 69-5 75-5 81-5 87-5 93-5 99-5

CO

40-5 2 3 1

(3
48-5 2 1 3 1 4 3 1

0:1

"0 56-5 1 1 2 7 15 6 2

64-5 2 1 3 9 4 1

72-5 1 3 3 2

42
s: 80-5 1 1 1

1..

88-5 1

.0

s

1

96-5 1

104-5

11

112-5 1

Example (6).—Instead of discussing the Changes in Wages and

Rents between 1905 and 1912, it might be of interest to find the

correlation between index numbers representing Actual Wages and

Rents in October 1912, taken from the same Report. The necessary

data for this purpose appear in Table (33) showing the distribution

of frequency between the different classes : e.g. seven towns were

observed in which the index number for wages was between the

limits (79-84) and the index number for rents was between the

limits (53-60). The wages figures quoted in Table (33) refer only

to unskilled labour in the building trade ; the inquiry actually

embraced certain occupations in the building, engineering, and
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printing trades, these having been selected as industries which are

found in most industrial towns, and in which the time rates of

wages are largely standardised.

Table (34). Correlation between Increment of Working

Class Prices and Increment of Working Class Rents

IN certain Industrial Towns of the United Kingdom.

X = Percentage Increment of Prices

7-5 9-5 11-5 13-5 15-5 17-5 19-5

-10 1

-7 1 1 2

to
-4 1 2 2 2 1 2

0=

-1 1 4 6 10 8 1

s: 2 1 2 5 8 1 1

to 5 2 4 2 3

8 1 2 3 1 4

II

Si
11 1 1 1

14 1

17 1

The coefficient of correlation turns out to be 0-46, distinctly larger

than in the previous case. Also the lines of regression are :

—

(1) ?/=0-47a;+21. (2) a;=0-45?/-f 56.

Example (7).—The Report also furnishes data for evaluating the

correlation between the Increment of Working Class Prices and

Increment o/ Working Class Bents, again meaning by increment the

percentage increase (+) or decrease (— ) between 1905 and 1912

(see Table (34)).

The correlation in this case is very small, being only 0-13. The

regression equations are :

—

(1) ?/=0-22a;-l-5. (2) x^0-01y-\-l3.



PART II

CHAPTER XII

INTRODUCTION TO PROBABILITY AND SAMPLING

Suppose we wish to know the average measurement of some organ

or character, e.g. length of forearm or weight or anything similar,

in a large population containing several thousand individuals. The
mean obtained by actual measurement if it were practicable to

carry it out on so large a scale, would evidently depend to some

extent upon the sex, the race, the age, the social class, and so on,

of the individuals selected, and we shall accordingly assume our

population to be composed of individuals of the same race and sex,

at about the same age, taken from the same class, etc. ; it would be

impossible in practice no doubt to secure that all conditions should

be identically the same for all the individuals observed, but the

population may be as homogeneous as we care to make it in theory.

Now suppose that, instead of attempting to measure every single

individual, a random sample of 1000 from among the population

be taken and that the mean and variabihty of the measurements

for this sample be calculated, giving results m^ and a^. With

these may be compared Wg and a^, the results of measuring a second

sample of 1000 individuals, m^ and a^, the results of a third sample,

and so on. It is extremely unUkely that the values obtained for

the 771 's in this way will equal one another, neither will the ct's

be equal ; but, if we have succeeded at the beginning in avoiding

all ill-balanced influences when we tried to make the field of

observation as homogeneous as possible, the resulting m's and a's

will only differ from the values of the mean and variability for the

whole population, assuming they could be measured, within a

comparatively small range.

Differences of this kind, which arise merely owing to the fact

that we are often obliged in practice, for lack of time or means, to

deal with a comparatively small sample instead of with the whole

population of which it forms a part, are said to be due to random
132
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sampling. Granted that the samples themselves are adequate in

size (containing, say, from 500 to 1000 individuals each) an esti-

mate of differences to be expected between one and another can be

made, and unless the observed differences fall outside recognized

limits it is said that they are not significant of any difference other

than such as might quite well be accounted for by random samphng

alone.

In theory, then, we can imagine a large number of such random

samples selected, and by determining the S.D. of their means,

m^, m^, mg, . . . , we should have a fair measure of the deviation

which might quite well occur from the true value, that is, from the

mean of the population as a whole, through working only with a

sample. Further, a range of two or three times the S.D. on either

side of the true mean ought to take in the majority of the sample

means observed.

Exactly the same principle holds good in dealing with the pro-

portion of individuals in a given population which can be assigned

to a particular class, or in discussing the S.D. of the distribution, or

the C. of v., or a coefficient of correlation, or any other statistical

constant, no matter what the nature of the character may be which

is measured or observed, or whether it relates to animate or inani-

mate objects. Take, for instance, the variability—by selecting

several samples from a given population we get a series of values

<^i. o'2' o's • • •) and in the S.D. of this distribution of variabilities

we have a measure to which we can compare the deviation of any

sample variability, cty, from the true variability of the whole popu-

lation, while a range two or three times the S.D. might be expected

to include the majority of the different variabilities met with in

the samples.

Although the S.D., as we have explained, provides quite a suit-

able measure of the extent of deviation of a sample constant from

its true value in the population as a whole, in practice, owing to

the historical development of the theory having followed the track

of the normal curve of error [see Chapter xviii.] a measure known

as the probable error and equal roughly to two-thirds of the S.D.

is not seldom employed in its place. The main, if not the sole,

justification for retaining this measure is that it has established its

position by long usage, and in any case it is very easily deduced

from the S.D. by the relation

p.e.=0-6745 S.D.,

which follows at once from the normal curve and is only strictly
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justified when the distribution is normal (see p. 246). Let it suffice

here that instead of simply using the S.D., as might now seem

the obvious course, some writers prefer to multiply the S.D. by a

certain fraction, in which there is no particular virtue except that

which arises through honourable descent, and to work with the

' probable error.'

Since we do not know how much v/eight to assign to any result

unless the magnitude of its p.e. is also given, results are frequently

stated in the following manner : in a study of the Variation and

Correlation in the Earthworm, by R. Pearl and W. N. Fuller [Bio-

metrika, vol. iv. pp. 213-229] :--

Mean length of worm=19-171±0-094 cms.,

S.D.= 3-077±0-067 cms.,

C. of V.=16-049±0-35G per cent.,

meaning that the mean length of the Avornis measured Vvas 19-171

cms., subject to a probable error of 0-094 cms. which might be in

excess or defect, in other words the mean length lay probably some-

where between

19-077 cms. and 19-265 cms.
;

similar remarks apply to the variabihty, absolute (S.D.) or relative

(C. of v.).

When the standard deviation (p.e./0-G745) is used as the measure

of error due to simple sampUng, the fact is generally recorded, and

it is sometimes spoken of as the standard error in that connection,

but, as it seems unnecessary to multiply names for ideas which are

not really new, only that they appear in a new setting, we shall

not employ the term.

It must be clearly understood that no outstanding and predict-

able cause exists, by our hypothesis, for such differences as occur

in the statistical constants between one sample and another : they

are the resultant effect of a complex of forces which cannot be

properly traced, still less measured, apart from one another, and

which have been happily described as that ' mass of floating causes

generally known as chance.' Since therefore the forces coming

into play, under the ideal conditions formulated, are of the same

chance nature as those affecting the spin of a well-balanced coin

or the selection of a card from a smooth and well-shuffled pack,

it may be expected that the resulting distribution of means,

Wj, m^, mg, . . . , of S.D.'s, o-^, ag, as, ... , and of all the other

constants will likewise be subject to the same laws of probabiUty
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which serve to describe within limits what happens in the case of

coin or card. It follows that some acquaintance with the first

elements of mathematical probability is essential if one is to under-

stand the theory of sampling, and a short digression must here

be made in order to introduce that subject. This will be found

to lead directly to a solution, under certain prescribed conditions,

in the simple case when the character observed is an attribute like

complexion, fair or dark, or like birth, male or female, which can

only fall into one of two definite classes and when every one observa-

tion in the sample is independent of every other. In the more

general case where the character observed is capable of direct

measurement and may lie in. magnitude anywhere along a scale

of values divided up into a number of different classes, it is not

so easy to determine the effect of random sampling, because it is

not possible, as it is in the previous case, actually to draw up a

frequency table describing in detail the character of the distribu-

tion to be expected from theory in any given sample.

The idea contained in the word probability is one famiHar to us

in our everyday talk, but if we seek to analyse it as used we find

it as elusive as the personality of the user. A remarks :
' Wars

will probably be stamped out, like duelling, in the course of time.'

B replies :
' No ! fighting will probably go on as long as the world

lasts—you can't change human nature.' Now the amount of

credence we are prepared to give to each of these statements is

vague and uncertain until we know something about A and B
themselves and the value of their judgment, quite apart from the

influence of our own opinion upon the matter
;

perhaps A is an

optimist or B is a pessimist, and in estimating the ' probably *

used by each we must allow for these facts. Probability, then, in

ordinary conversation, is something largely subjective : it has a

varying significance according to the person who uses the word

and, unless we could get rid of this personal element, it would be

hopeless to try and approach it along scientific lines.

Mathematical probability is unlike colloquial probability in that

all the uncertainty is taken out of it, or at least the uncertainty is

confined within defined limits. We shall only touch the fringe of

the subject in this book, and what we have to say may be best

introduced by considering some examples which may appear trivial,

but they possess the merit that no personal bias can enter into

their discussion to distort the results. The reader must not be

impatient at their artificial character : in many, if not in all,

branches of science, before tackling any particular problem as it
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actually exists, it is helpful to examine what can be deduced in a

simple case free from all complication, and, having settled that,

we try to see how the results are affected when we come to allow

one by one for the various complicating factors which exist. For

example, in Astronomy, the track of a planet in space may first be

found on the hypothesis that the sun alone is the compelling influence.

Then we may proceed to discuss how it is deflected from its path

when the gravitational influence of neighbouring planets also is

taken into account.

Let us start with an ordinary pack of playing cards, and, after

shuffling, turn up one card. Can we measure the probability that

this card shall be (1) the 7 of spades ? (2) some spade ?

Altogether there are 52 cards, and we will suppose that the

cards are so cut and so smooth that each of the 52 has an equal

chance of being turned up : for instance, there is to be no sticki-

ness or anything to help any particular card to evade us by sticking

fast to its neighbour. Now we are certain to turn up some card

and there are 52 different possibilities, each of them by hypothesis

equally probable. If, then, we agree to denote certainty by unity,

we must divide 1 into 52 equal parts and assign one part to each

card as the probability of its appearance.

1. The probability (or chance as it is sometimes called) of .turning

up any stated card, such as the 7 of spades, is therefore 1 out of 52,

i.e. 1/52.

2. Again, since there are 13 spades in all, the chance of turning

up some spade is 13 out of 52, i.e. 13/52=1/4.

These results may be put in another way which is often useful.

If the experiment is repeated a great number of times, a return to

the initial conditions of the problem being made after each trial

by replacing the card drawn and reshuffling the pack, we should

expect to turn up the 7 of spades on the average about once in

every 52 experiments, and we shoiild expect to turn up some spade

on the average about once in every 4 experiments. This must

not be taken to mean that in 4 experiments we are sure to turn

up just one spade—a trial will readily prove such a statement to

be untrue—but that, if we went on performing experiment after

experiment, we should in the long run get a proportion of about

1 spade to every 4 experiments and a trial will likewise prove the

truth of this statement.

Generally, when an event can happen in n different ways alto-

gether, and among these different ways there are a which give

what might be called successful events, the probability of success
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at any single happening is a out of n, i.e. a/n, and is usually denoted

by the letter p, and the probability of failure is {n—a) out of n,

i.e. {n—a)/n, and is usually denoted by the letter q.

Clearly {p-\-q)^l, and this is reasonable because we are certain

to get either a success or a failure at a single trial and unity was

fixed as the measure of certainty. In k trials, the probable number
of successes would be kp and of failures kq, because in n trials, on

the average, there are a, or np, successes and (n—a), or nq, failures.

Examj^le (1).—In the second case considered above, the pro-

bability of success (turning up a spade) is a out of n

-:a/w= 13/52= l/4=p,

and the projability of failure (not turning up a spade, i.e. turning

up one of 39 other cards) is (n—a) out of n

= {n-a)/n=d9/52=3/4:=q.

And (2>+g)= 1/4+3/4=1.

Example (2).—What is the chance of drawing either a picture

card or an ace from the pack at a single trial ?

Altogether there are 12 picture cards, and the chance of drawing

any one of them is thus 12 out of 52

= 12/52=3/13;

and the chance of drawing any one of the 4 aces is 4 out of 52

=4/52=1/13.

Hence the total probability required

= 3/13+1/13=4/13.

Generally, if the jDrobability of one type of event is p^, and the

probability of a second type of event is p^, and if either type is

reckoned a success, then the total probability of success is (^1+^2)*
This evidently holds good however many different types there

may be, and even if there is only one event of each type.

Consider now the simultaneous happening of two events, one of

which can happen in n different ways, a among which are to be

regarded as successful, and the second can happen in n' different

ways, a' among which are to be regarded as successful. Further,

the two events are to be absolutely independent of one another

in the sense that neither is to influence the success or failure of

the other. What is the probability of a double success occurring ?

The total number of different combinations of the two events
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possible is nn' , for any one of the n possible happenings for the

first event can be combined with any one of the n' possible happen-

ings for the second event. Also the total number of different

combinations of two successes possible is aa' , for any one of the

a possible successes for the first event can be combined with any

one of the a' possible successes for the second event. Hence,

according to our definition of probability, the probability of a double

success is aa' out of nn'=aa'/nn'={al7i){a'/n').

Thus to get the probabiHty of a double success for a combination

of two independent events we must multiply together the separate

probabilities for the success of each event taken by itself.

Similarly, in the above case, the probability of a double failure

= {n—a){n'—a')lnn' ; and the probability of one success and one

failure

a n'—a'n~a a'

n n n n

for the first event can be a success and the second a failure or the

first a failure and the second a success.

Here, again, if we take all the different possibilities into account,

and add the probabilities corresponding to each case, we arrive

at certainty, the measure of which is unity, thus :

—

probabiHty of 2 successes —aa'/nn',

„ 1 success and 1 iai[uTe=a{n'—a')Jnn' -\-a'{n—a)/nn'

„ 2 failures ={;n—a){n'—a')lnn'.

Therefore total probability, all cases,

aa' a{n'—a')
,

a'{n—a) {n—a){n'—a')=—,+
-,
— -r- — -r ;

nn nn nn nn

— {aa'-\-an'—aa'-\-a'n—a'a-\-n7i'—na'—an'-\-aa')lnn'

=nn'Jnn'

= 1.

Example.—Take two packs of cards. What is the probability

of drawing an ace from the first pack and a king, queen, or knave

from the second pack ?

Here a=4, n=52, a'=12, n'=o2 ; hence the required probability

=aa7wi'=4/52x 12/52=3/169= 1/56|.

Thus we might expect to succeed on the average about once in

56 trials.
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We proceed to discuss the case of a coin spun a number of times

in succession, and we shall find the probabilities of the appearance

of so many heads (H) and so many tails (T) in so many spins on the

hypothesis that the coin is perfectly balanced and equally likely

to fall on either side.

In 1 spin there are 2 possible events, namely H or T, which

we shall write simply as

(H, T).

In 2 spins there are 4 possible events, because we can combine

the H or T of the first with an H or T at the second spin, and we

may express the result thus

(H, T)(H, T)=(HH, HT, TH, TT) ;

the interpretation of which is that we may get either head followed

by head, or head followed by tail, or tail followed by head, or tail

followed by tail.

In 3 spins there are 8 possible events, because we can combine

the 4 events previously possible with an H or T at the third spin,

thus getting

(H, T)(H, T)(H, T)

= (H, T)(HH, HT, TH, TT)

= (HHH, HHT, HTH, HTT, THH, THT, TTH, TTT)

;

the interpretation of which is that A\e may get either 3 heads in

succession, or 2 heads followed by 1 tail, or head followed by tail

followed by head, and so on.

In 4 spins there are 16 possible events, because we can combine

the 8 events previously possible with an H or T at the fourth spin,

thus

(H, T)(HHH, HHT, HTH, HTT, THH, THT, TTH. TTT)

= (HHHH, HHHT, HHTH, HHTT, HTHH, HTHT,
HTTH, HTTT, THHH, THHT, THTH, THTT,

TTHH, TTHT, TTTH, TTTT).

But the method here adopted to get the possible events at each

stage is precisely the same as that which gives the successive terms

in the ordinary algebraical expansions of

(H+T), (H+T)(H+T), (H+T)(H+T)(H+T), etc.

Also each new spin has the effect of doubling the number of possible
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events obtained at the previous spin, and we conclude that in

n spins, there are

(2x2x2x . . . to w factors),

or 2", possible events, and these events are given by the successive

terms in the expansion of

[(H+T)(H+T)(HH-T) ... to w factors.]

Let us now consider the probabilities of the different events

obtainable. The important point to notice is that at any stage

each possible event has exactly the same probability, for there is

no reason why any particular spin should give H rather than T,

or T rather than H : for example, in 3 spins there are 8 possible

events, each by itself equally probable, and we therefore divide

the unity of certainty into 8 equal parts and assign one part to each

event, thus

probability of 3 heads—HHH=|
probabihty of 2 heads and 1 tail—HHT=|^

HTH=i i

THH=iJ
probability of 1 head and 2 tails—HTT=J)

THT=| i

TTH=iJ
probabihty of 3 tails—TTT=J.

It is clear from this arrangement that, if the order of the appear-

ance of H and T is indifferent, some events are of the same type

and some types are likely to appear oftener than others, e.g. the

probability of getting ' 2 heads and 1 tail ' (or ' 1 head and 2 tails ')

is three times as great as the probability of getting ' 3 heads
'

or ' 3 tails.' Hence for conciseness it is convenient to adopt the

ordinary index notation and write

HHH=H3, HHT=H2T, HTH=H2T, etc.,

so that the possible events in 3 spins are

W, 3H2T, 3HT2, T3
;

in 4 spins they are

W, 4H3T, 6H2T2, 4HT3, T*

;

and so on.

The probability of any jDarticular type is now readily written

down : e.g. in 4 spins, the probability of getting 2 heads and 2 tails

= (number of successful events possible)/(total number of events

possible)

=6/2*=6/16=i.
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But the binomial expansion always sums together terms of the

same type for us in just the manner wanted, and we have the

possible events in n spins given by the successive terms in the

expansion of

(H+T)(H+T)(H+T) ... to 71 factors,

i.e. (H+T)«,

i.e. H«+"Ci . H«-iTi+«C2H«-2T2+ . . . +T«,

and therefore again the probability of any particular combination

is readily written down : e.g. probabiUty of ' (w— 2) heads, 2 tails
'

= (number of successful events possible)/(total number of events

possible)

= "C2/2«.

Another way of stating the result obtained is to say that we

might expect to get

n heads appearing on the average about once in every 2'* trials,

(n—1) heads, 1 tail „ „ ,, "Cj times „

(7i— 2) heads, 2 tails ,, „ ,, "Cg times „

and so on.

K, in accord with our previous notation, we call the appearance

of, say, H at any spin a ' success,' and label its probability ^ by the

letter p, and if consequently the appearance of T at any spin is a

' failure,' its probability, |, to be labelled by the letter q, we have the

probabilities of the different combinations of events in (H+T)", or

H«+«CiH«-iTi+"C2H"-2T2+ . . . +T«,

given by the corresponding terms in (p+g)", or

where p=q=h
After each spin of the coin in the case considered the distribution

of probabilities was symmetrical, e.g. after the fourth spin the pro-

babilities were
1 _* JL _* J-
lF» iB^' 16> iFl l^"'

We pass on now to a case where the distribution is not symmetrical,

owing to the fact that p and q are no longer equal for any isolated

event.

Consider the throw of an ordinary die in which each of the six

faces is assumed to have an equal chance of appearing uppermost.

The probability of throwing, say, a 3 is 1/6, since we are certain

to throw either 1, 2, 3, 4, 5, or 6 ; and the probabihty of failing to

throw a 3 is 5/6, since we are certain either to throw a 3 or not

to throw a 3.
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If we represent the probability of success (say, in this case,

throwing a, 3) hy p {i.e. 1/6), and failure {i.e. in this case, failing

to throw a 3) by g {i.e. 5/6), we have

^+5=1/6+5/6=1.
Bearing in mind then that the probability for a combination of two

independent events is determined by multiplying together the

separate probabilities for each, we have the following table shoeing

what might be expected when 1, 2, or 3 dice are thrown up together,

where s stands for success and / for failure :

—

No. of

Dice
thrown.

Different
Possibilities.

Different
Probabilities.

1

2

3

ss, sf.

fs,ff.

sss, ssf, sfs, sff,

fss,fsfjfs,fff.

pp,M-
qp, qq.

ppp, ppq, pqp, pqq,

qpp, qpg, qqp, qqq.

The table is easily extended on the same principle, and at each

step, it will be noticed, a fresh pair of possibilities, s or /, is intro-

duced, with corresponding p or q, to be combined with what has

gone before.

If the order of appearance of 6- and / is a matter of indifference,

e.g. if it does not matter whether the first die shows s and the

second /, or vice versa, so that results of the type sff and fsf may
be regarded as equivalent, we may use the index notation, as in

the coin case, to render the table more concise, thus :

—

No. of
i

Dice !

thrown.
,

Different
Possibilities.

Corresponding
Probabilities.

1 s, f. p, q.

2 s\2sf,p.
I

p\2pq,q^.
3 S\ 3S2/, 35/2, p^ p3^ 3p2^^ 3p^2^ g3

When, therefore, n dice are thrown we again recognize the

different possibiUties as given by the successive terms in the ex-

pansion of (5+/)'*, namely

s«+«CiS"-^f+"C2.s«-^/'^+ ...+/«,

and the corresponding probabilities by the successive terms in the

expansion of (p+g')", namely

p''+«Ci2)'»-Y+"C2P«-V+ • • •
+9''*-
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Hence the probability of throwing n threes=2)**=1/6" ;

(n-1)

(n-2)

_ 1 ^~^' 6^^ '6

=5ri/6"
;

n{n—l) 1

1-2

=25w(w-l)/2.6";
and so on.

The result we have just obtained is of perfectly general applica-

tion. Whether we spin 7i coins, in which the probability, p,^ of

success (say * heads ') for each is 1/2, or throw n dice, in which the

probability, p, of success (say ' to get a 3 ') for each is 1/6, or have

any n similar but independent events happening in which the

probabiUty of success for each is p, the different resulting possi-

bihties as to success are given by the successive terms in the expan-

sion of (s+/)"j and their corresponding probabilities are given by

the successive terms in the expansion of {p-\-q)^.

We are thus in a position to form a frequency table, Uke that on

p. 53, showing the probabiUties of getting 0, 1, 2 ... % successes

(in other words, the proportional frequencies of these different

numbers of successes) at the occurrence of n similar independent

events, where p is the probabiUty of success for each and q is the

probability of failure :

—

(1)

Table (35). Binomial Distribution.

(2) (3) (4)

Number of

Successes.

(X)

1

Frequency.

(/)

q-

n(n-l) .^
1-2 ^ ^

n(»-!)(«- 2)^ _
3^3

1-2-3

Product of Nos. in

Cols. (1) & (2).

ifx)

Product of Nos. in

Cols. (1) & (3).

1-2

np"

np

2n(»-l)g"-V^

3n{n-l){n-2) , ,

F2 ^ ^

n^p"

np[l+p{n-l)]
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Col. (1) gives the deviations from the origin of measurement,

which in this case is taken as ' no successes,' the class interval

being equal to a difference of 1 in the number of successes.

The summations of the last three columns are effected as

follows :

—

Col. (2). g"+ g-V+^Y7^V-V+ . . . +2>"

= 1,

because p-]-q=l.

Col. (3).

=np.

Col. (4).

=wjp[l+^(w— 1)].

The arithmetic mean of the distribution

=sum of terms in co}. (3)/sum of terms in col (2)

=np.
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The mean-square deviation referred to zero as origin, zero in this

case corresponding to ' no successes
'

=sum of terms in col. (4)/sum of terms in col. (2)

=np[l-^p{n—l)].

Thus the standard deviation, a, is given by

a^=np[l-\-p{n—l)]—x^,

where x is the deviation of the mean from the origin of measure-

ment, so that x=^np.

Therefore a^=np[l-\-p{n—l)]—n^p^

=np{l—p)-\-n^p^—ri^p^

=npq.

Hence ct='\/(^P4)»

and p.e.=0-6745 A/(npq).

These two results are exceeding^ important, and it is essential

to understand what it is they measure. An example may help

to make this clear.

If we spin 300 coins, counting ' head ' for each a success, the

number of heads we shall get will be unlikely to differ very greatly

from the average or mean number of successes, np, i.e. 150 if p=l/2
for each coin, and in the long run, if we repeat the experiment a

great number of times, we shall get a proportion of about 150 heads

to every one experiment. Again, if we throw 300 dice, counting

every throw of the number 5, say, for each die a success, so that

p in this case=l/6, the number of fives we shall get will be unlikely

to differ much from np, i.e. 50, and in the long run, if we repeat the

experiment a great number of times, we shall get on the average

a proportion of about 50 fives to every experiment ; we should

find, for example, something like 5000 fives if we threw 300 dice

100 times in succession. The a.rithmetic mean of the distribution

tells us therefore about what number of successes to expect in one

experiment with n events if n is fairly large, though we should be

unlikely to get exactly this number if we confined ourselves to the

one experiment.

The second result, the S.D., supplies us with a measure of the

unlikelihood of getting the exact number of successes expected at

any single experiment, for it defines the dispersion of the different

numbers of possible successes about their average. Clearly the

greater the dispersion, the greater is the likelihood of missing the

K
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average. The mean number of successes when an experiment is

repeated a great number of times is np, but at any single experi-

ment it is not unlikely that the number of successes obtained may
dififer from np by as much as 0-6745 \/{npq) in excess or in defect

;

it is, however, unlikely, as we shall see later (p. 244), that the

number will differ from np by more than S\^{npq) in excess or

defect when the distribution is not very skew, or unsymmetrical,

especially if n be large. The probable error in the case above when

we throw a sample of 300 dice is

=0-6745V(300x 1/6 x5/6)=0-6745\/(41-67)=4-4,

and it is therefore quite likely that the number of fives obtained

at one experiment will differ from the expected number, 50, by as

much as 4 or 5 in excess or defect, but it is unlikely that the number

will fall outside the limits 50i:3v/(41-67), say 30 to 70.

It is sometimes more convenient to refer to the proportion of

successes, etc., expected at any experiment rather than to the

actual number expected. In that case, since with n events the

expected number of successes is pn, but the number obtained may
quite likely differ from this by ±0-6745-v/(npg'), therefore with

n events the expected proportion of successes is pn/n, i.e. p, with

quite possibly an error=±0-6745\/(wpg)/7i, i.e. :^0-Q74i5\/{pq/n).

Thus, with the 300 dice, the expected proportion of successes at

one experiment lies between

[l/6-0-6745V(l/6x5/6-^300)] and [1/6+0-6745 v/(l/6x 5/6^300)]

i.e. (1/6-0-6745/46-5) and (1/6+0-6745/46-5)

i.e. 1/5-5 and 1/6-6
;

and it is unlikely that the proportion wOl differ from 1/6 by more

than 3/46-5, i.e. 1/15-5.

To illustrate how the binomial distribution might be directly

applied, an experiment was made with 900 digits selected at random

by taldng in succession the digits in the seventh decimal place in

the logarithms of the following numbers :

—

10054, 10154, 10254, . . . 99954,

as given in Chambers's Mathematical Tables. In this way each of

the 10 digits, 0, 1, 2, 3 ... 9, may be supposed to have stood an

equal chance of selection each time one was \M"itten down. Gaps

of 100 were left between the numbers selected so as to avoid runs
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of the same figure which sometimes occur even in the seventh

decimal place owing to lack of independence.

The digits w.ere arranged in 36 columns, each column containing

25 digits, and in this way we obtained what was equivalent to

36 separate but like experiments with 25 events each. If we agree

to regard the appearance of a 7 or an 8 as a successful event, and

the appearance of any other digit as a failure, the chance of success

at any appearance is 2/10, and the chance of failure is 8/10. The
case is thus of exactly the same kind as that of throwing 25 dice

36 times in succession, and if the probability of success, namely 1/5,

for each independent event, be denoted by p, and the probability

of failure, namely 4/5, by q, the distribution of successes and failures

should approximately conform to that given by the expansion of

for any particular experiment, and since the experiment was re-

peated 36 times, the total numbers of successes and failures of

different orders obtained should approximately conform to

36(^+g)25,

for if the probability of an event is p the number of events to be

expected in N trials is Np.

The actual distribution observed is compared with that given

by the binomial expansion in Table (36). Col. (2) is obtained by
picking out the appropriate terms in the expansion of 36{p-\-q)^'^,

where p—l/5, gf=4/5
; this expansion is

/ 25 25-24- \
36^=^5+^. p2V+y7|^^""3'+ . . . +q''j.

Thus, 5 successes occur

36
' —- »5«2o

1 • 2 • 3 . . .20

times, and this equals 7 06, or approximately 7.

The mean number of successes by theory=w^=25/5=5. The
mean by trial, since it is measured from zero as origin, the numbers
in col. (1) being the deviations,

=2'(/a;)/i;(/)- 162/36=4-5.

The standard deviation by theory

= V(«P?)=V(25xixl)=2.
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Table (36). Distribution of Stjccesses (getting a 7 or 8) in

THE Random Choice of 25 digits 36 times in succession.

(1) (2) (3) (4) (5)

No. of

Successes.

Frequency Frequencv Product of Product of

by
Calculation.

by
Experiment.

Nos. in

Cols.(l)&(3).

Nos. in

Cols.(l)&(4).

{X) (/) (/•^) ifx')

1 1 1 1 1

2 3 5 10 20

3 5 5 15 45

4 7 7 28 112

5 7 9 45 225

6 6 4 24 144

7 4 3 21 147

8 2

9 1 2 18 162

36 36 162 856

By trial, the mean square deviation, measured from zero as origin

==856/36.

Thus the S.D. by trial= V(-V/-«'),

where x is the deviation of the mean from the origin,

= ^[856/36- (4-5)2

= 1-88.

It will be seen that not one of the 36 experiments gave a number

of successes differing from 5, the theoretical mean, by more than

twice the S.D., for the number ranges only between 1 and 9.

If we treat the 900 digits as 900 separate experiments with one

event each, instead of treating them as 36 experiments containing

25 events each, we have 1/10 as the chance for the appearance of

any particular digit, and hence the number of times any digit may
be expected to appear

=n2)±f-v/(%^g), approximately

= (900)tV± I V(900 X tV X TO

)

-90±6.

The actual number of occurrences of each digit was as follows :

—

Digit....
No. of Occurrences 95

1

96

2

93

3

105

4

91

5

80

6

82

7

72
8

90
9

96
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SO that the digit 7 showed the greatest divergence from 90 of any,

and this was only just three times the probable error.

[The Theory of Probability is older than that of Statistics. Todhunter, in

his History, states that ' writers on the subject have shown a justifiable pride

in connecting its true origin with the great name of Pascal.' The well-known

story of the latter being found, as a lad of twelve, tracing out on the hall floor

geometrical propositions which he had evolved in his own head is not. to be

wondered at, nor yet that at sixteen he wrote a small work on Conic Sections,

when one reflects upon the fame he was to win as a philosopher and writer,

as well as a mathematician, in his too brief life of thirty-nine years. He was

born in 1623 of a distinguished French family, and for the last half of his

life he suffered from the effects of a serious disease which contributed to turn

his attention from mathematics to religion and philosophy.

We learn from Todhunter how a certain gentleman of repute at the gaming

tables set Pascal pondering on a question of probability concerning the fair

division of stakes between two players who give up their game before its con-

clusion—an old problem cited in a work by Luca Pacioli as early as 1494. A
correspondence followed between him and Fermat, then probably the two most

distinguished mathematicians in Europe, and so began a science which has

fascinated at one time or another all great mathematicians from that day to

this.

The illustrious family of the BernouUis, friends of Leibnitz, who championed

his claim against that made by English mathematicians on behalf of Newton
to the invention of the Calculus ; De Moivre, an exile in England, owing to

the revocation of the Edict of Nantes ; Euler, Lagrange, and Laplace, who
worked out in algebraical form Newton's theory of gravitation for the motion

of the planets—all these had a share in building up the science of ProbabiUty,

often by investigating problems in games of chance, where the conditions can

be made mathematically perfect, so by careful analysis preparing the way for

the use later of the same principles in matters of greater importance.

It has been said that the development of the subject owes more to Laplace

(1749-1827) than to any other mathematician ; nor did he confine himself to

its theory : he would have earned fame by his astronomical applications alone.

His method was to take certain observations, and to determine by means of

probability whether the abnormalities present were merely the results of chance

or whether there was some as yet undiscovered but constantly acting cause

behind the phenomena observed. In this way he was led to highly interesting

and important results such as those relating to the theory of the tides, the

effect of the spheroidal shape of the earth on the motion of the moon, the

irregularities of Jupiter and Saturn, and the laws which govern the motion

of Jupiter's moons. It needs but a step in thought to pass from the dis-

cussion of such physical data to the statistics of social phenomena and the

causes which determine abnormalities met with in that field. Professor Edge-

worth, in making reference to books that have been WTitten on Probability at

the end of his excellent article under that heading in the Encyclopcedia

Britannica, remarks that ' aa a comprehensive and masterly treatment of

the subject as a whole, in its philosophical as well as mathematical character,

there is nothing similar or second to Laplace's Thiorie analyfique des

probabilifes.'J



CHAPTER XIII

GENERAL POPULATION.

SAMPLING [continued)—formula for probable errors

So far we have only considered the most simple case of random

samjjling when we take a sample of n independent events each of

which falls into one of two classes according to its nature, the

chance of entering either class being the same for every event

:

we have dealt, that is to say, more particularly with non-measurable

characters. We pass on now to measur-

able characters which are distributed

among several classes according to their

size, so that a frequency distribution

table can be set up for each sample ; and

assuming that the population from which

the samples are drawn is homogeneous,

the samples themselves containing each

an adequate number of individuals, there

should not be greater differences between

one table and another than can be ac-

counted for by random sampling. It is

our object to discover how great such

differences may be.

Given a homogeneous population of N
individuals which we will suppose could

be distributed into a number of groups,

Yj individuals in the first group, Y2 in the

second group, Y3 in the third, and so

on, according to the size of the organ or

character under observation. Suppose a

random sample r)f n individuals be taken

from this population, and when they are

assigned to their several groups let the

frequency table now take the form shown,

with Pi individuals in the first group, y^

in the second, and so on. To find the probable error of y^, the

frequency observed in the kth group.
150

Class. Frequency.

Yi
Y2

Y,

1st Group
2nd Group

A;th Group

N

sample.

Class. Frequencj-.

1st Group
2nd Group

kth Group

2/2

Vk

n
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Consider the selection of the n individuals, one by one in succession,

to form the sample. When the first choice is made the probability

that we shall get an individual falling into the A;th group is, by defini-

tion, Y;fc/N, and the probability will remain practically the same for

each successive choice granted that N is considerable. We have thus

n independent events, the chance of success (falling into the A;th

group) for each being p(=Yfc/N) and the chance of failure being

nl =1——-]. The case is therefore analogous to the one pre-

viously considered to which the binomial distribution is applic-

able, so that the frequency to be expected in the ^th group is np

with S.D., Oy =Vnpq ; i.e. yk=np with a p.e.=0-6745Vwi>g'-

Now in practice the numbers Yj, Yg, Y3 . . . would not be known,

and hence the true value of p would also be unknown, but since

yk=np, approximately, when the sample is of adequate size, we

shall get a fair idea of the probable error involved by taking

p—yjn, where y^ is the actual frequency observed in the A;th group.

. (1)Hence, CT^,^=wpg=i/fc(l—^)=yk(^l—

-

and the frequency in the kth group

=y,±0-6745^ (2)

The size of the S.D. is under ordinary conditions a test of the

adequacy of the sample, for the frequency in the kth group, if due

simply to random sampling,

should not differ from its

expected value by more than

3cr„ and ct„ should therefore

be small compared with y^.

itself.

Tofind the correlation between

the frequencies in any two

groups of a sample distribution.

Let the expected frequencies

in the various groups of the

sample be denoted by y^, y^,

. . ., yj^, . . ., and suppose an

error Sy^ in y^. is associated

with errors Sy-^, Sy^, . . . , Sy„ ... in y^, y^,

require then the correlation between yj^ and y^

Class.
Expected
Frequency.

Observed
Frequency.

1st Group
2nd Group

kth Group

sth Group

2/2

y>

2/2+ ^2/2

yk+^yk

y.+^y.

n

We
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Now although the group frequencies may change relative to one

another, the total sum of frequencies in all groups is not affected,

because the n individuals of the sample make up its composition in

each case : to keep n constant the group frequencies must adjust

themselves accordingly, which explains the correlation between

them. Hence to compensate for an excess, Syj^ (assuming §2/^+'^'^),

of frequency in any one group there must be a defect (— St/^^) shared

among the other groups, and the fairest way of sharing will be in

proportion to the expected frequencies in the several groups.

But the total frequency divided between groups other than the

kth is (n—yj^), so that the proportion of (— S^/fc) due to the sth group

is yj{n-yj,), thus

Vs
S2/,= -^^(-8y.).

Therefore, S^/fc • 8^3

8y\
n

2/.
1-Vk

•Vic

n ct2
Vk . (3)

by (1).

FIRST SAMPLE.

Size of Organ
or Character
observed.

Frequency of

Observations.
First Moment. Second Moment.

^1 3/1

y-i

Vk ^kVk

^\yi ,.

x\yk

n 2(X2/) ^x^y)

This gives the product moment of the deviations from yj^ and y,

in one particular sample ; summing for all such samples, remem-

bering that by definition the coefficient of correlation between ?/^
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and 2/s is ^y y ^^i^Vk • ^ys)h'^v ^v >
where v is the total number

of samples, also a'^y =I!Sy^,./i>, we have

vr cr„ CT„ =•Vuv^ Vi. y V -Vk-

Therefore,
1 Yi^y,

. (4)

gives the correlation required.

To find the p.e. of the mean of a sample of n observations. Let a

frequency table be drawn up in the usual manner showing the

number of observations
2/i> 2/2 • • • corresponding to organs of

different sizes x^, x^ . . .

The mean referred to some fixed point as origin is then given by

also the mean square deviation of the sample referred to the same

fixed point is i^-^, say, given by

and H-\—W-^a'^

where a is the S.D. of the sample.

For another sample of the same size the frequency distribution

SECOND SAMPLE.

Size of Organ
or Character
observed.

Frequency of

Observations.
First Moment.

Xk

y-i + ^v-i

Vk+^Vk

^iiVl + %2)

^k{yk + ^Vk)

n My+^y)

may be slightly different, say, Vi+hij^, 2/2+^2/2' • • •> ^^i^ conse-

quently the mean will also be different, say,

M+8M=[a:i(t/i+82/i)+X2(2/2+8t/2)+ . . . ]/n.
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^and, by subtraction,

8M=(^i8yi+a;28t/2+ • •)/» • • • (5)

Now we want to determine the S.D. of the different values of M
found among the different samples, and that is given by

where 2J denotes summation for all samples and v is the number of

sainples. This suggests that we should square both sides of

equation (5), getting

n^ . m^ =- x\Sy\-\- . . . -\-2x^XoSyiSy2+ • . .

TheTeioTe,n^ .va\^x\va^yi+ . . . -\-2xixJ-'^.-v)-\- . . .,

by (3). Hence, n-aking use also of (1),

yi\
,

2^i?/i .
x^y^

nV2M=^Wl-|)+

-{x\yx+ . . . )-hAy\+ . . . +2x,y, . x^y,-{- . . .)

n

=nf^\—{Xiy^-\- . . .)^

n

=n{H-%-W).

Thus a\={f^\-M^)/n=a^/n,

and the probable error of the mean=0•6745a/Vw . . • (6)

The p.e. in the arithmetic mean found by taking a random sample

of n events is a measure, so to speak, of the failure to hit the absolute

mean, and it follows that the precision of the sample, the accuracy

of aim at the mean, would be not unfairly measured by some

quantity proportional to the reciprocal of the above expression,

namely, \/w/0-6745o-. With such a measure the precision would

evidently be increased if the number of observations in the sample

were increased, being proportional to the square root of their

number.

[It is desirable to draw a distinction here between what have been

termed biassed errors and unbiassed errors ; errors due to random

sampling are of the second class for there is, by hjrpothesis, no

[* We do not know the true mean for the population as a whole, but we take

in place of it M, the value given by the sample, which we may do with little

error if n is large. Similarly (t is the S.D. of the sample.]
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reason Avhy they should be in one direction rather than in another.

Biassed errors, however, all tend to be in the same direction and

they may arise in different ways, e.g. they may be due to faults of

omission or commission on the part of the observer himself : he

observes either carelessly or badly, omitting certain factors which

ought to be taken into account, or so measuring or classifying his

results that they appear always larger or less than they really are

in fact.

Sometimes, although the bias is known to exist, it may be im-

possible to correct it : the most one can do is to bear it in mind

and allow for it in using the results. A familiar example of this

occurs in the collection of household budgets from the poor to find

their standard of living, where it is only possible to get particulars

from the more intelligent and thrifty class among them.

Whereas in the case of unbiassed errors due to random sampling

we can diminish the probable error of the average by increasing

the number of observations, the same is not true of errors which

are biassed, for suppose an error e in excess be made in each of

n observations x^, x^, . . . a:„, the effect upon the average is to

increase it from

Xi+x^+ . . . +a:„ (a:i+e)+(a:2+e)-f . • . +(^„+e)
tQ ,

n n

i.e. from

•^11 •''2 1" • • • -rX„ Xi-\-X2-\- . . . -\-Xji
to -f-e,

n n

so that the average is over-estimated by precisely the same amount.

If, therefore, we know that bias exists, it is well, if possible, to

correct it in each observation, for by so doing we change biassed

into unbiassed errors, and though our corrections may be somewhat

wide of the mark, the resultant error will then be diminished by

increasing the number of observations : e.g. a farmer offers 400

sheep for sale and, being anxious to make a good bargain, he asks

a higher figure for them than he is in reality prepared to take
;

let us suppose that this excess is 2s. 6d. for each sheep, then clearly

the average price per sheep at which he is prepared to sell will be

less than the amount he asks by 2s. 6d. also. But now suppose the

buyer, a simple person knowing little of the prices of sheep and

less of the ways ^ of men, goes through the flock one by one and

makes the error of offering a price either much above or much below

what the seller is prepared to take ; even if his unbiassed offers
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difiFer by as much as 10s. for each sheep from the seller's reserve

price, so long as they are random in direction, i.e. sometimes too

much and sometimes too little, the resultant difference in the

average from what the seller is prepared to take will probably not

greatly exceed §10s./V400, or 4d. per sheep.

We can sometimes diminish the effect of bias, even when its

extent is unkno\^Ti, by working with the ratios of the quantities

affected instead of with the quantities themselves : e.g. suppose

biassed errors, ei and €.2, enter into the measurement of the variables

Xj^ and X2, both in excess, the ratio of the variables then

= K+ei)/(a;2+e2)

=^(i+l^)(i+:

=— ( l+ -^)( 1—— +higher powers of €0)

-1

=5l+f5. ^2

if we omit higher powers of ej and eg than the first on the under-

standing that they are both comparatively small. Suppose, for

example, there was an error of 5 per cent, made in measuring x-^

and an error of 3 per cent, of like sign in measuring x^ then the

resulting error in x.^\x^ would be 5 per cent.— 3 per cent.=2 per cent.

Clearly the same holds good also if the errors are both in defect.

This explains why a comparison of results arranged, say, on the

index number principle may be trustworthy, although the method

of formation of the numbers themselves may be in some respects

faulty, granted that the same faults are repeated each year so as

to produce like errors, i.e. the bias is to be unchanged in character.

To correct the faults in one case and not in the other would prejudice

the success of the method, since it depends upon the errors counter-

acting one another.]

Example (1).—To illustrate the important result we have obtained

for the p.e. of the mean of n observations let us return to the experi-

ment of selecting 900 random digits. The distribution actually

obtained, and the theoretical distribution to be expected in the
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long run if the experiment were repeated several hundred times and

the average taken, are shown in the following table :

—

Table (37). Distribution of 909 Random Digits.

Digit.
Frequency
Observed.

Theoretical
Frequency.

Digit.
Frequency
Observed.

Theoretical
Frequency.

1

2

3

4

95

96
93

105

91

90

90
90

90
90

5

6

7

8

9

80

82

72

90
96

90
90
90
90

90

It is a simple matter to calculate the mean and S.D. for the dis-

tribution from this table in the usual way ; the results are :

—

Observed mean=4-38 ; S.D.-2-911

Theoretical mean=4-50 ; S.D.=2-872.

Thus the p.e. of the mean based on the sample

= ±0-6745 X 2-911/^/900

= ±0-065,

and 4-38 differs from 4-50 by less than three times the p.e.

The 36 averages of samples of 25 events apiece were also calcu-

lated, and the following were the results obtained :

—

2-76, 3-32, 3-68, 3-72, 3-72, 3-72, 3-76, 3-80, 3-92, 3-92, 408, 4-12,

4-16, 4-16, 4-16, 4-28, 4-36, 4-40, 4-40, 4-40, 4-44, 4-60, 4-64, 4-68,

4-72, 4-72, 4-76, 4-88, 4-96, 5-00, 5-00, 5-00, 5-08, 5-28, 5-40, 5-72.

The mean of this distribution= 157-72/36=4-381, and the

S.D. =0-612. But the S.D. of the whole distribution of 900 digits

=2-911, and therefore the S.D. of the distribution of averages of

samples of 25 digits should be 2-911/'v/25=0-582, differing from

0-612 by about 5 per cent.

To find the p.e. of the sum or difference of two variables. Let the

mean values of the two variables be denoted by y and z, so that

deviations from these values found in a particular sample may be

denoted by hy and hz. If then we wTite

u=y-\-z

we have

8m=S?/+8z (7)
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To find the S.D. of u we therefore require S{hu^)jv, where the

Z denotes summation for all samples and v is the number of samples.

But, squaring both sides of equation (7), we have

8w2=§y2_|_§22_|.282/8z.

Thus Zhu^=Ehy'^+Shz^+22:{hyhz),

where the summation extends to all samples. Hence

iCT\= va'^y+ va\-\-2vay(T^ry^

or a\=a%-^a\-\-2Tj,a^a,

where r„. is the correlation between the variables. And the

p.e.=0-6745cT„.

The p.e. of the difference of two variables follows at once by

changing the sign of z throughout ; for, if

v=y-z,

we have Sv^=Sy^~\-hz^—2SySz,

and a\=a%-\-a\—2T^^aya^.

Generally, if Xj^, x^, . . . a;„ be the mean values of n variables,

and if hx^, hx^, . Sx^ denote deviations from these values in

a particular sample, we may write

U= Xj^+ X2-{- . ,. . -\-x„

and 8w=8.ri+8.r2+ . . . +8a;„.

Thus 2'8w2=i;8.ri2+ . . . +2Z{dx,8x,)+

whence <=o\+ • . +2r, , o-^ (7, + .

Important Corollary. If y and z are quite independent so that

Ty^ is zero, the p.e. of their sum and the p.e. of their difference

have the same value, namely, the square root of the sum of the

squares of the p.e.'s of y and z themselves, which

=0-6745v/(a\+a\) . . . (8)

This result is exceedingly important, because it can be directly

used to test whether a difference between two samples is accidental,

i.e. whether it is such as might arise through sampling, or whether

it implies a real difference between the two populations from which

the samples are selected. An example will illustrate the pro-

cedure :

—

Example (2). In a study of Minimum Rates in the Tailoring

Indtistry, by R. H. Tawney, a table is given (p. 114) which suggests
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that ' in the north of England women work in the tailoring trade

when they are young ... in London and Colchester they have

to work when they are older.' Taking some figures from that

table we find :

—

District.
Workers over
36 years old.

Workers at

all ages.

Proportion
over 35.

London and Essex

Manchester and Leeds .

11,718

4,029

35,316

21,822

0332
0185

The difference between the proportions over 35 years of age

= (0-332-0185)= 0-147.

Let us suppose for the moment that this difference is not significant

of any real difference in conditions between the two districts, but

18 merely due to random sampling. In that fcase the most natural

value to assign to the true proportion of women workers over 35

for the trade as a whole, as given by these figures, would be

11,718+4,029 _15,747_,.g^^

35,316+21,822 57,138

The S.D. for the first sample (London and Essex) would then be

a^== ^/{pq/n)^ ^[0-216 X 0-724/35,316],

and for the second sample (Manchester and Leeds) would be

(72= VL0-276X 0-724/21,822].

Hence the p.e. for the difference between the proportions in the

two samples would be roughly

= tV'(<7'i+^'2)> by (8),

= |V'[0-276 X 0-724(1/35,316+ 1/21,822)]

= 1V'[0-276 X 0-724/13500]

==00026.

The actual difference between the proportions, 0-147, being much

more than 3(0-0026), is certainly significant of a greater difference

between the two populations than can be explained by random

sampling alone.
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Another method of attack would be to assume a real difference

between the two populations, if other considerations led us to

suspect such a difference, and to find whether such a difference could

be disguised by random sampling. In that case the proper pro-

portion to assume for the first sample would be 0-332, giving

C7j= V[0-332 X 0-668/35,316]= ^628/10*,

and for the second sample the proportion would be 0-185, giving

(j2= V[0-185 X 0-815/21,822]= ^691/10^.

Hence the p.e. for the difference between these two proportions

due to random sampling would be

= WK'+^2'), by (8),

= fI^V(628+691)

=0-0024.

The actual difference is 0-147, which certainly could not be out-

balanced by an error in the opposite direction due to random

sampling, because it is much more than three times the probable

error due to sampling.

Sometimes we have to test the difference, not between two

simple proportions, but between two sample distributions. In

that case the mean of each sample may be calculated so that the

difference (M^— Mg) between the means is known ; to find out

whether or not it is significant of some real difference between the

two populations from which the samples are drawn, (M^—Mg)
is compared with its p.e., namely

0-6745a/Kmi+ct\2),

or 0-6745 V((T2i/Wi+(T2,,/r?.2) . . . (9)

where n^ and %2 are the numbers of observations in the two samples

respectively, and a^, 02 are the S.D.'s of the samples. Unless

(Mj— M2) is definitely greater than some two or three times this

expression we cannot be verj' sure that the difference between M^

and Mj may not have arisen merely through random sampling,

and it may quite likely not be significant * of any real difference

between the two populations as regards the organ or character

which is under consideration.

[* It should be observed that the S.D. provides a wider margin for significance

than the p.e., because a range of approximately 3 p.e. =3'§ff= 2<r only. It is

quite safe therefore to attach no great significance to a difference which does

not exceed two or three times the p.e.]
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Example (3).—Statistics have been collected to test whether there

is any significant difference between the eggs laid in general by

cuckoos and those laid by them in the nests of particular species

of foster parents. Results of the following kind were obtained

[see Biometrika, vol. iv., pp. 363-373, The Egg of Cuckidus Canorus

(2nd Memoir), by 0. H. Latter] :

—

Number Mean
S.D.

(mms.)

Signi-

Group. of Length ficance Remarks.
Eggs. (mms.) Test.

Eggs of the Cuckoo
race in general 1572 22-3 0-9642 .

.

Eggs laid in nests of

—

Garden Warbler . 91 21-9 0-7860 70 Significant.

White Wagtail 115 22-1 0-7606 1-6 Not significant.

Hedge Sparrow 58 22-6 0-8759 3-75 Probably significant.

The difference between the mean lengths of eggs laid in the nests

of garden warblers and those laid by cuckoos in general

= 22-3—21-9=0-4 mms.

The p.e. of this difference

= 0-6745V[(0-7860)'^/91+ (0-9642)2/1572], by (9),

=0-6745V(0-007380)
=0-058.

Hence the significance test

=0-4/0-058=7-0,

and we conclude that the difference in length between the two

classes of eggs is certainly significant. Similarly the other cases

may be tested.

In the example just given, to find out whether one population

differed from another, the arithmetic means have ]>een compared
;

but the mean alone will scarcely serve to establish the identit}'' of

any population. For example, we can conceive of two distinct

races of men, both of the same mean height, but one race embracing

a number of giants and dwarfs. Of course if we agreed to define

two races as identical when they have the same mean heights, there

would be nothing more to be said, but that would certainly only

be a very rough-and-ready attempt at classification.

Taking into consideration only the character of height, a further

step in definition would be to measure the mode or most fashionable

h
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height, and the dispersion or variability—absolute : the standard

deviation, and relative : the coefficient of variation—of the two

races. Then, after comparing heights with sufficient detail, the

attention could be turned to innumerable other characters, skull

and body measurements, physical, mental, and even moral

attributes.

Clearly the difficulty of definition and of estabhshment of identity

grows as we pass along the scale from physical to moral. Moreover,

other statistical constants must be requisitioned when the question

of the existence and degree of relationship between two organs or

characters is to be determined. As the S.D. and the C. of V. serve

to measure the amount of variability, so the coefficient of correlation

comes in to measure the amount of likeness or association. Further,

and especially in problems of inheritance, the coefficient of regres-

sion must be measured. It might seem at first sight hopeless to

try and measure the correlation between two such characters as

athletic capacity and health in the same boy, or between the

truthfulness of one boy and that of his brother ; but the genius of

Karl Pearson has gone some way to solve even this difficult problem

by means of a system of adjectival instead of numerical classifica-

tion [see Phil. Trans., vol. 195a, pp. 1-47, On the Correlation of

Characters not Quantitatively Measurable, and, as an exceptionally

interesting application of the method, see Pearson, On the Laws of

Inheritance in Man, ii. ; On the Inheritance of the Mental and Moral

Characters in Man and its Comparison with the Inheritance of the

Physical Characters; Biometrika, vol. iii. pp. 131-190]. In short,

for a full and exact definition of a population of any kind, human
or otherwise, it is necessary to measure not only the means, but all

the more important statistical constants, modes, medians, S.D.'s,

C.'s of v., coefficients of correlation and regression, and so on, and

it is no less necessary to calculate also their probable errors if we
are to test the real significance of such differences as are observed

in these constants between two samples from the same or from

different pojoulations.

The probable errors for the more important constants, some of

which are only introduced later in the book, are collected together

in Table (38) for reference. The proofs in general are a little intricate

and would be lacking in interest to the ordinary person, who is

satisfied to take algebraical analysis on trust so long as he under-

stands the nature of the results he uses, but the more mathematical

reader who is anxious to see proofs may refer for some of them to

Biometrika, vol. ii,, pp. 273-281, Editorial, On the Probable Errors
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oj Frequency Constants, which has been freely consulted on the

subject here.

The usual notation is adopted, n being the total number of

observations in the given distribution, supposed normal in general,

a the S.D., etc.

Table (38). Probable Error.s of Statistical Constants.

statistical Constant. Proba

0-674

ble Error (=0G745S.D.).

Any observed group frequency, y 5x V[y(l-2/A0]

The mean of a distribution of any type „ <t/V71

The S.D. of a normal distribution, a . „ alV-ln

[The second moment about the mean, fio „ (T-V2/11

„ third „ „ „ ^3 •

[ „ fourth „ „ „ f^i .

"

0-V96/W

The coefficient of variation, v

.

>»

V2v\- MOO/ J

The coefficient of correlation, r » (l-r^)/Vn

The correlation ratio, rj . . . . „ {l — if)/Vn, nearly

fx, as determined from (X-X) = ?-'^'(Y- Y),
V

when Y is given ..... , cr^Va-r')

Y, as determined from (Y-Y)= r^^(X-X),

^ when X is given .....
Distance between mode and mean in a skew

distribution ......
Skewness ......
/3., (which should= 3 for a normal distribution)

^i( „ „ =0 „ „ )

^K

J5

fr.Vd-r^)
(rV(3/2u)

V(3/2n)

V(6/n)

Example (4).—In the example which follows are given data

necessary for testing the significance of differences in variability

as well as in mean values. They represent an attempt made to

find whether members of a particular species of crab caught in

shallow water differed with regard to certain characteristics from

those caught in comparatively deep water [see Biometrika, vol. ii.,

pp. 191 et seq., Variation in Eupagurus Prideauzi, by E. H. J.

Schuster]. Only a few of the results are recorded here, to two

decimal places ; the reader will find it a valuable exercise to verify

for himself the p.e.'s given in each case.
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Measurement Made. Sex. Locality. Mean (mm.). S.D. (mm.).

-
C. of V.
per cent.

Carapace length Male

Female

Deep water
Shallow ,,

Deep ,,

Shallow ,,

8-59±0-05
841 ±0-04
7-54±0-03
7-12db0'02

l-67±0-04
1-19±003
0-94±0-02
0-8G±0-02

L945

l249|o.28
l2-12±0-25

Difference of Means (mm.). Difference of S.D.'s (mm.).
Difference of C.'s of V.

per cent.
Sex.

0-18±0-07(poss. sig.)

042i:0-04(sig.)

0-18d-0-05(prob.sig.)

0-08±0-03(poss. sig.)

l-70db0-58(poss. sig.)

0-37±0-37 (not sig.

)

Male
Female

The significance or otherwise of differences between variabihties

in the case of cuckoos' eggs (p. 161) might be tested in the same way.



CHAPTER XIV

FURTHER APPLICATIONS OF SAMPLESTG FORMULA

We have been discussing in the last chapter how to test two samples,

supposed each to contain homogeneous material, to find oiit whether

they belong to the same or to different types of population, but

the further question often arises as to whether a sample is or is not

homogeneous.

Example (1).—To this we may obtain a partial answer by working

out the statistical constants of the sample and their p.e.'s in order

to compare them with the corresponding constants for a sample or

series of samples believed to be homogeneous and of the same

type. For example, Professor Karl Pearson has measured the

skulls of skeletons of the Naqada race, excavated in Upper Egypt

by Professor Flinders Petrie and presumed to be some 8000 years

old, and he places his results for comparison alongside those

for certain other races admittedly homogeneous [see Biometrika,

vol. ii., p. 345, Homogeneity and Heterogeneity in Collections of

Crania'] :
—

c, _...-.„ Number of

Observations.

Variability (mm.).

Skull Length. Skull Breadth.

Skulls ^

Living

head.s

'Ainos

Bavarians .

Parisians

Naqadas
,EngUsh
Cambridge undergrad'tes

English criminals

^Oraons of Chota Nagpur

76

100

77

139

136

1000

3000
100

5-936

6-088

5-942

5-722

6-085

6-161

6046
5-916

3-897

5-849

5-214

4-612

4-976

5-055

5014
4-397

Mean Variability 5-987 4-877

1U5
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The S.D. of the variability of skull length calculated from this

series=0-129 mm. and of the variability of skull breadth=0-545 mm.,

and these supply standards for valuing the differences between the

Naqada and the mean variabilities.

Another method of procedure is to take a random sample out of

the sample itself, assuming the latter is large enough to admit of

an adequate sub-sample, and to compare the constants of the

whole and part. When they do not dififer beyond the limits allowed

by random sampling the inference is that the whole may be treated

as a homogeneous class if judged by this test alone.

Example (2).—In an interesting and important memoir, On
Criminal Anthropometry and the IdentificaHon of Criminals, by W. R.

Macdonell [Biometrika, vol. i., pp. 177 et seq.], the author uses this

method to test the homogeneity of a class of 3000 criminals by

measuring also a random sample of 1306 criminals out of the 3000.

He obtained, for example,

S.D. of head length--6-04593i0-05265 mm., for the 3000 criminals
;

= 6-00247±007922 „ „ 1306

The difference between the variabilities in the sample and sub-

sample, by result (8) on p. 158,

^0-04346±V[(0-05265)2+(0-07922)2]
=0-04346±009512

which is certainly not significant. If the same holds good with

regard to the means and other constants, then the whole may be

said to be homogeneous so far as this test goes.

Example (3).—Another example may be given from the memoir
on Variation and Correlation in Brain Weight, by Raymond Pearl,

[Biometrika, vol. iv., pp. 13 et seq.]. The author wished particularly

to investigate the change of brain weight with age ; on the hypo-

thesis that the weight of the brain reaches a maximum between

the ages of 15 and 20, remains unchanged from 20 to 50, and then

begins to decline and so continues till death, the material was

divided into a ' Young ' series, ages 20 to 50, and a ' Total ' series

including all between 20 and 80. The ' Young ' series thus formed

a selection from the ' Total ' series, but a selection based on age

and not on brain weight. If there were no con-elation between

age and brain weight, this selection, based as it is on age, would,

of course, be random as regards brain weight. Now correlation

does exist between the two, but it is so slight that, within the limits
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of error, the ' Young ' series does form practically a random sample

of the Total ' series, as is shoAMi by the following figures :

—

Difference in Variation Constants between Young and

Total Series (written with a positive sign ^VHEN the

Young Series gives the greater value).

Swedes
Bavarians

Male. Female.

S.D.
I

C. of V. i
S.D. I C. of V.

+ 2-851 ±4066 +0122±0-291 + 4-786 ±o-46o +0-271 i 0-435

-1-888+ 3-5561 -0-173+0-234 l-10-357+3-909|-0-941+0-320

Thus in only one case, that of the Bavarian females, is the differ-

ence between the variabilities, S.D. or C. of V., of the two series as

gi-eat as its probable error, and even in that case the differences.

10-357 and 0-941, are not three times as large as their respective

p.e.'s, 3-909 and 0-320. Dr. Pearl concludes from these and similar

results that ' the series are reasonably homogeneous in other respects

than age.'

The reader is recommended to test Ms knowledge of the formulae

for probable errors bj^ applying them to the following examples.

Dr. Alice Lee, in a note on Dr. Ludwig on Variation and Correlation

in Plants [Biometrika, vol. i., p. 316] makes use of the statistics

relating to Ficaria Verna in Example (4). Those in Example (5)

are taken from among a large number of others in the highly

interesting memoir, On the Laws of Inheritance in Man, by Professor

Karl Pearson and Dr. Alice Lee [Biometrika, vol. ii., pp. 357 et seq.]

cited once before.

Example (4).

—

Variation and Correlation in Ficaria Verna.

No. of Observations.
Mean No. of

Petals; S.D.
Mean No. of

Sepals; S.D.

Correlation between
No. of Sepals and
No. of Petals.

1000 (Greiz A)
1000 (Greiz G)

8-286; 1-3382

8-232; 0-9954

3-695; 0-8524

3-437; 0-7033

0-2439+0-0201
0-2480+0-0200

We have here all the data necessary to find the p.e.'s of the

means, variabilities, and correlations, and we wish to know whether
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the differences between the means and variabihties of the A and G
plants can be accounted for by random samphng alone.

For examjDle, the difference between the petal means

= (8-286- 8-232)± I

=0-054±0-035.

;

1 -3382)2 (0-9954)2"|

1000~
1000~J

Clearly this difference, being not so great as twice its p.e., is not

significant and may quite well be due to random sampling.

Again, the difference between the petal variabilities

(1-3382)2
,

(0-9954)2"|

2000 2000
= (l-3382-0-9954)±|

=0-3428±0-025

which is certainly much too great to be explained away by random
sampling merely.

Similarly the differences betAveen the sepal means, between the

sepal variabilities, and between the correlations, may be tested for

significance by comparison with their p.e.'s.

Example (5).

—

Size and Variability of Stature in the

Two Generations.

Father. Mother. Son. Daughter.

Mean height (in.)

S.D. (in.) .

C. of V. (per cent.)

67-68 ±0-06
2-70±0-04
3-99±0-06

62-48 ±0-05
2-39±004
3-83±006

68-65±005
2-71 ±0-04
3-95±0-06

63-87 ±0-05
2-61 ±0-03
4-09±005

The student in this case might use one of the formulae for the

p.e.'s to find the number of fathers, mothers, sons, or daughters

observed when the p.e.'s are known, and then the remaining p.e.'s

might be verified v/hen the numbers of observations are found.

As evidence of ' assortative mating,' the tendency of like to

mate with like, the following particulars are given, based on 1000

to 1050 cases of husband and wife :

—

Correlation between stature of husVjand and stature of wife= 0-2804±0-0189
span ,, ,, ,, span ,, ,, =0-1989±0-0204

,, forearm ,, „ ,, forearm ,, ,, =0-1977±0-0205

To measure the average intensity of inheritance, the extent of
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resemblance between parents and children in any character, co-

efficients of correlation are calculated such as the following :

—

Coefficient of Correlation
between stature of father and stature of son =0-514±0-015

,, ,, ,, ,, ,. daughter= 0'510±0-016

,, mother ,, ,, „ son =0494±0-016
„ ,, ,, „ ,, daughter= 0-507±0-016

[In verifying the p.e.'s for this case take the number of observa-

tions to be 1024.]

One more extract may be quoted, a prediction table, giving the

probable mean stature of sons of fathers of given stature, and

so on :

—

Son's probable stature = 33"73 + 0"516 (father's stature) ± 1 "56

Daughter's „ „ = 30-50 + 0-493
( „ „ )±1-51

Son's „ „ := 33-65 + 0-561) (mother'sstature)± 1-69

Dauf^hter's „ „ = 29-28 + 0-554
( „ „ )±l-52.

All values given in this examjDle for the la.e.'s should be

verified.

Before we consider further applications of these principles to

questions of a somewhat different kind, let us imagine a very

simple though artificial illustration. Suppose we have 999 sheep,

each one ticketed, the numbers on the tickets running from 1 to

999. Also suppose 666 of these sheep are white and 333 are black,

so that, if we pick out any one at random, the chance of it being

black is 333/999 or 1/3. Let us call picking a black sheep a 'success,'

then p- 1/3, ^=2/3.

We proceed now to select 99 sheep in succession at random
from the flock with the understanding that each sheep is returned

into the flock before the next is j)icked out. This insures that

the chance of a success at each selection remains equal to 1/3 and,

of course, there is nothing to prevent the same sheep being picked

more than once. The selection might practically be made by
placing in a box 999 tickets, numbered from 1 to 999, one to corre-

spond to each sheep, then picking out 99 of them in succession,

being careful to replace each and to shake up the box before j)icking

out the next ; if there were absolutely no difference between the

tickets, such as would cause one to be picked more easily than

another, the selection made in this way would be random in the
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sense required, and the tickets so chosen would determine wliich

sheep were to be taken and which left.

The proportion of black sheep to be exi)ected in such a random
selection of 99 is 1/3, but, if we only perform the experiment once,

it is quite likely that the proportion we actually get will differ from

1/3 by an amount
= 0-6745V(^g/w)

=0-6745V(J . I • A)
= 1/31, about,

while it is unlikely that the proportion will differ from 1/3 by much
more than 3/31, or 1/10.

Conversely—and it is rcall}- the converse which is useful in prac-

tice—if we do not Icnow the proportion of black sheep m the whole

flock, we may get a fair estimate of it by taking a random sample

of 99 sheep (anj' other number will serve the purpose, but the

larger the better for accurac}'), and if we find that in this sample

there are 33 black sheep, i.e. 2>=33/99=l/3, it will appear that

the value of x> for the whole flock is 1/3, subject to a probable error

-Ql4:5 \/{2)qj'n) in excess or defect, i.e. the true proportion for the

whole flock may quite likely differ from 1/3 by as much as 1/31,

but it is unlikely to differ by much more than 1/10. It should be

noticed that the calculation of the probable error in this converse

case is based upon the value of p given by the sample taken, for

that is the only value of which we have knowledge.

Too much stress can scarcely be laid on the fact that the samples

chosen must be absolutely unbiassed, otherwise the use of the

formula) np and \/{npq), or the corresponding proportional formulae,

cannot be justified : each sheep in our illustration must have the

same chance of being picked, and no one selection is to have any

influence on another. The failure to appreciate this essential

point has led to no little waste of time and effort in the collection

of valueless statistics.

The method of sampling has been employed in a way at once

interesting and useful by Dr. A. L. Bowley, and, as some of this

work has barely received the attention it deserves, it may be well

to explain two of his experiments in some detail.

The first was of interest because its results could be tested by

an examination of the original record from which the sample was

taken. The details concerning it are abstracted from the Journal

of the Royal Statistical Society, September 1906.

Example (6).—Bowley sampled the dividends paid by 3878
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companies as quoted in the Investors' Record. His sample con-

sisted of 400 of these companies, i.e. about 10 per cent., selected in

a purely arbitrary fashion thus : the investigator took a Nautical

Almanac and noted down the last digits of one of the tables, record-

ing them in groups of four, but if any particular group gave a

number bigger than 3878 he rejected it. In this way each of the

numbers between 1 and 3878 had an equal chance of selection (for

numbers under four figures would appear like 0327, 0042, 0009,

which would be taken to represent 327, 42, 9 respectively), and the

selection of one had no influence on that of any other. The com-

panies in the Investors' Record were numbered consecutively, and

the dividends corresponding to the 400 arbitrary numbers obtained

formed the sample with which Bowley worked.

After making some interesting deductions with regard to the

average for the whole distribution, to which we shall return pre-

sently, he proceeded to forecast the grouping of the original com-

panies as to their dividends hy setting out the grouping discovered

in the sample 400, as follows, using the standard deviation in place

of the probable error as the error due to random sampling ;

—

Table (39). JJistribution of Dividends paid by a

Sample of 400 Companies.

(1) (2) (3) (4)

Dividend.
Sample of

400
Companies.

Percentage of Sample
Companies in each Class.

Percentage of

all Companies
in each Class.

Nil

£1 to £2, 19s. 9d.

£3 to £3, 9s. 9d.

£3, 10s. to £3, 19s. 9d.

£4 to £4, 9s. 9d.

£4, 10s. to £4, 19s, 9d.

£5 to £5, 19s. 9d.

£6 to £7, 19s. 9d.

£8 to £10, 19s. 9d.

Above £11

28

6

37

71

64

53

60

48

29

4

7 with S.D.= l-27

U
9| .. -1-46

17| „ -1-90
16 „ =-1-83

13i „ =1-68
15 ,. -1-78
12 ., -1-63

7i „ -1-29
1

6
1-5

8-4

18-8

17-3

13-8

17-7

10-8

38
1-9

In col. (3) the S.D. for each group was calculated as follows :

—

for the first group : out of 400 possible events we have 28 successful

events, meaning by ' successful ' here ' a company paying no

dividend,' thus

^-: 28/400, g-= 372/400.



172 STATISTICS

Hence the S.D. of the frequency in the fii'st group

=V[28(i-AV)]
= V(28x372)/20
=5-1.

Since this is for a sample of 400, the S.D.of the percentage* frequency

in the first group

-i(5-l)-l-27.

The other S.D.'s are calcuhxted in the same way, but when the

number in a class is very small the forecast can scarcely be relied

upon and consequently the S.D. is not inserted.

It will be noted, by comparing with the numbers in col. (4),

showing the corresponding percentages for all the 3878 companies,

that every forecast was remarkably good except one, class £8 to

£10, 19s. 9d., where the error approaches three times the S.D., and

the exception Avill serve as a warning that, in working with samples,

the unexpected sometimes happens. Professor Edgeworth, in his

Presidential Address to the Royal Statistical Society (1912), points

out that the method appears to be a permanent institution in

the Statistical Bureau at Christiania, where it has given very good

results. These can be checked or ' controlled ' for safety if complete

statistics are obtainable under some heads. He faii'ly sums up the

utility of sampling when he says that ' we may obtain from samples

a general outline of the facts—often sufficient for the initiation of

a project like that of insurance—rather than the features in detail.'

Bowley also divided up his 400 random samples into 40 groups

of 10 companies each, and calculated the average for each group.

The S.D. for these 40 averages was found in the usual way, giving

0-775. But since this wsiS the S.D. for averages of 10, we conclude

that

(the S.D. for the distribution ofthe400companies)/'\/10=0-775

i.e. the S.D. for the distribution of the 400 companies=0-775y'10.

Hence, applying the same principle again,

the S.D. of the average of the 400 sample companies

-=0-775V10/\/400
=£0-122.

[* It would not be correct to take v'[7(l - ti^ij)] as the S.D. of the percentage
frequency in the first group ; this value would be double the true value, namely,

J v'[28(l - i\%)] = h \^n(^ ~iIt))], because the accuracy is increased by increasing
the number of events in a sample, and the sample here is really 400 and not 100.]
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Now the average of the 400 samples turned out to be £4-7435.

Hence it was judged that, if this was a fair selection (and the rando)u

method adopted was such as to make it fair in all reasonable likeli-

hood), the average for the 3878 companies should certainly lie

between

£[4-7435±3(0-122)].

The true average was found by actual calculation to be £4-779,

well within the above limits, although the original items varied from

nil to £103, being grouped according to the nature of the security

—Government, Railways, JMines, etc., etc., and the averages and

S.D.'s on successive pages differed materially. This aggregation,

Bowley remarks, is very similar to that found in wages in different

occupations and localities, and in man\^ other practical examples.

The value of the second experiment due to Dr. Bowley lies in the

suggestion that similar means can be ajDplied with good results to

the investigation of many social phenomena.

If out of a large group a comparatively small sample of statistics

is collected in the purely random manner already described, we are

able by such means to estimate what is the average, and even to

obtain limits between Avhich the average A\ill almost certainlj- lie,

in the large group based upon values found for the average and

S.D. in the small sample.

Example (7).—With the collaboration of Mr. Burnett-Hurst and

a number of other workers, Dr. Bowley conducted an inquiry into

the conditions of working-class households in four representative

towns—^Northampton, Warrington, Stanley, and Reading—the

results of which are published by Messrs. Bell and Sons under the

title of Livelihood and Poverty. They are similar in character to

those obtained by Rowntree in his study of conditions in York,

but what is peculiar to Rowley's inquiry is that only a sample,

about 1 in 20, of the working-class houses in each town was

examined, and the conditions in the towns as a whole were deduced

from these samples.

We are not concerned here with the actual facts disclosed by the

investigation, striking as they are, but with the explanation of the

sampling method adopted, and as to that it may be remarked that

the foundation on which it rests is precise^ the same as that which

underlay the example of the 999 black and white sheep. The

main point to notice here again is that Bowley was careful to select

his samples in unbiassed fashion as follows :
' For each towni a list

of all houses . . . was obtained, and without reference to anything
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except the accidental order (alphabetical by streets or otherwise)

in the list, one entry in twenty was ticked. The buildings so

marked, other than shops, institutions, factories, etc., formed the

sample.' It will be evident that tliis method of choice is not quite

on the same level of randomness as that followed, for example, in

drawing cards from a w^ell-shuffled pack, each card to be replaced

and the pack reshuffled before the next is drawn ; but, for that

very reason, the results of the experiment are all the more Hkely

to be well within the limits of error provided by the formulae of

the ideal case. The deliberate selection of every twentieth house

in each street is likely, that is to say, to give a more representative

picture of the tovm. as a whole than would be obtained by selecting

the same number of houses in a purely random fashion which might

by chance give too much emphasis to some street or district.

A practical test of the goodness of the sample was possible by

comparing the results in a few instances with information availa])le

from other sources. In order to make the method of working

quite clear, let the guiding principle first be recalled :

—

' If , in a random sample of n items, the proportion of successes

is p, then the proportion of successes in the universe from which the

sample is selected will not be hkely to fall outside the limits

p±3(0-6745)V(i3?/w),

and, if that universe contains altogether N items, the number of

successes will not be likely to fall outside the limits

Ni)±3(0-6745)NVMw)-'

In Reading the total number of all inhabited housea in the

borough was 18,000 at the time of the inquiry, i.e. N^ 18,000.

The total number of houses visited was 840, i.e. ?i=840. If we

call a house assessed at £8 or less a ' success,' the number of such

houses found in the sample was 206.^

Thus 2^=206/840, g= 634/840,

and the number of houses rented at £8 or less in the whole borough

should be

N^ with a p.e.= 0-6745N\/ (^0-/71)

i.e. 4414+180.

The actual number of houses so rented was known from other sources

to be 4380, well within the limits forecasted.

The value used for p in the above is that given by the sample,

but when we know the actual number of successes in the universe
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as a whole, as in this case we do, we might use the true vahie of

p, i.e. the value for the universe in place of that for the sample.

The argument might also be put in another way without affecting

the principle employed, thus :

—

The number of houses rented at £8 or less in the whole borough

was 4380.

But the proportion of houses sampled in the whole borough was

840/18000, i.e. 1/21-43.

Hence the number of houses at the above rental to be expected

in the sample^ 4380/2 1-43=204.

The number actually found in the sample was 206, with a probable

=0-0745V(840 X r%\% X \W%^)
= 8, approximately.

Again, the number of persons engaged in a certain occupation at

Reading was known to be 761 in the borough as a whole. Hence

the number of persons so engaged to be expected in the sample

was 761/21-43, i.e. 35.

The number actually found in the sample was 29 with a probable

®^'°^ = 0-6745V(w;>^)

=0-6745V(840 XtUU X kiUl)
=4, approximately.

Further examples of the method are here given, in each of which

the total number of events is small so that the number in each

sample is also small, and since, as we have seen, the accuracy or

precision of the proportion of successes discovered in any sample

varies directly as the square root of the number of events the sample

contains, the results cannot be expected to be so good when this

number is small.

Example (8).—514 candidates sat a certain examination paper
;

their marks ranged from 3 to 64. The candidates were numbere<-l

consecutively from 1 to 514, and a random sample of 90 (17i per

cent.) was selected from among them by writing down the 90

numbers formed by the digits in the seventh decimal place, taken

in groups of three, in the logs of the numbers 10104, 10204,

10304, . . . , as given in Chambers's Tables, neglecting all numbers

greater than 514 and calling such numbers as 005, 037, etc.—5,

37, etc. In this way each of the numbers between 1 and 514 stood

an equal chance of inclusion.
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The distribution of candidates in the sample is compared with

that for all 514 together in the following table :

—

Percentage of All Percentage of Candidates in

No. of l\Iarks Obtained. Candidates who obtained Sample who obtained
these Marks. these Marks.

p.e.

Less than 15 8 8±l-9
15 but less than 25 19 17±2-6
25 „ „ 30 16 18±2-7
30 „ „ 35 18 13±2-4
35 „ „ 40 15 17±2-6
40 „ „ 50 19 18±2-7
50 and over. 7 10±21

The reader might verify the p.e.'s given in the last column :

e.g. proportion in the sample obtaining less than 15 marks=7/90
;

therefore ^^=7/90, g= 83/90.

Hence the S.D. for this group

-V[7(1-9V)]
-:2-54,

and the S.D. for the percentage

= -V(rX2-54-2-8.

Thus the p.e. for the j)ercentage

= ^a— 1-9, approximately.

Exami)le (9) deals in a similar way with the data concerning

infectious diseases in 241 towns in England and Wales previously

recorded on p. 62.

A sample of 60 towns, i.e. about 25 per cent., was chosen in a

random fashion as in the last example, and the sample distribution

is compared below with that of the 241 towns as a whole.

The verification of the probable errors in this and the next case

is left to the reader.

Case Rate per 1000
of the Population.

Actual No. of

Towns so rated.

No. as suggested by
the Sample.

1 and under 5

5 „ 9

9 „ 13

13 and over.

85

86
42
28

p.e.

92 ±10
96±10
28± 7

24± 6
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Example (10) is concerned with the annual output j)er head in

142 different types of employment as given in 1907 by the Census

of Production [data from Sixteenth Abstract of Labour Statistics of

the United Kingdom, Cd. 7131]. The distribution suggested by a

random sample of 50 different occupations is compared with that of

the complete list of 142 occupations.

No. of Occupations No. in Complete Actual No.
Output i)er liead. in Sample with List as deduced found in

this Output. from Sample. Complete List.

p.e.

Under £60 4 ll±3-6 12

£60 and under £80 16 45 ±6-2 42

£80 „ £100 6 17±4-3 25

£100 „ £120 10 28±5-3 20

£120 ., £190 8 23±4-9 27

£190 and over 6 17±4-3 16

The S.D. in each of the last three examples has been calculated

by using the value for p given by the sample, which is the value

one must fall back upon in practice when the true p for the whole

distribution is unknown. In any case where ^^e are able to test

our sample by comparison with the whole distribution, however,

it is possible to use the true value of p, e.g. in Example (10)

output £100-120, 2)=-20/142 as opposed to 10/50.

M



CHAPTER XV

CURVE FITTDSTG PEARSON" S GENERALIZED

PROBABILITY CURVE

It may be recalled that in the introductory chapter an outline A\as

given of the manner in which the theory of Statistics might be

conceived to develop. It was shown how the desire for simplifica-

tion and the need for compression leads to the division of a large

mass of figures dealing with any given matter into groups ; indeed,

it may well be that the statistics have been so arranged at the

source in the act of collecting : e.g. we may have to deal with

so many males of height 54 in. and less than 55 in., so many of

height 55 in. and less than 56 in., so many of height 56 in. and less

than 57 in., and so on. Here corresponding to each given height,

which we maj^ label x, or each range of height, such as x^ to Xg,

we have a certain frequency' of males of that height or range,

which frequency we maj^ label y, and hence a frequency table can

be formed showing the variation of y with x. Further we have

seen how such pairs of corresponding values of x and y can be

plotted so as to picture the complete observed frequency' distribution

to the eye.

Now the representation thus made, though helpful up to a point,

is not entirely satisfactory. Whether we simplj'^ join up successive

points (.r, y), or set up rectangles of varpng height y on bases

spanning the successive ranges of x, or erect ordinates (y's) at the

mid-points of these bases, joining the summits in the manner

previously described, the connection so established betAveen each

observation and the next is too superficial, depending merelj^ on

the fact of casual neighbourship, and may sometimes give a false

impression of frequence' and changes in frequency in the population

of which the observations are but a sample. And this is neces-

sarily so if we confine ourselves strictly to the data observed.

One difificulty which has to be faced is that only "svithin certain

broad limits can we trust our observations to give us information

which is trul}^ representative of the population in which we are
178
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interested. We seldom if ever deal with the wliole poiiulation :

in fact it maj' be so large that it is impracticable even to reckon it

;

instead we make a random or unbiassed selection of a smaller but

adequate number of individuals belonging to the population, and

classify them according to the size or nature of the character which

concerns us. But, granted that our sample is adequate in size

and unbiassed, the numbers obtained in the different groups of the

frequency distribution will still be subject to the errors of random

samj)ling, and it is only after these errors have been calculated that

we can lay down the probable limits within which our sample may
be regarded as really representative of the population as a whole.

Another difficulty arises owing to the fact that our observations

in general do not cover the whole field of values of the variables x

and ?/ ; we may quite Ukely M^ant to know the percentage frequency,

y, of individuals with a character (height or whatever it may be) x

which does not chance to be any one of the x's observed, if the

observations are only recorded according to discrete (separately

distinct, like 5 ft., 6 ft., 7 ft.) values of x ; on the other hand, if

the observations have been classed in groups, the frequency in

which we are interested may refer to an x which does not coincide

with the centre of an}- group or which is even outside the range

altogether. We have therefore further to inquire whether such

information can be deduced in any waj^ from the statistics collected.

Now it so happens that both these difficulties disappear if we
can only attain the ideal already outlined in discussing graphs,

and find a suitable curve to ' fit ' the statistics observed. 8uch a

curve would not necessarily pass through all or any of the points

[x, y) representing the observations, for these, as we have remarked,

are subject to errors of random sampling and the observed frequency

y of any x may be greater or less than the corresponding y in the

population at large to which the curve is presumed to approximate.

The curve in short must remove the roughnesses which are in-

separable from ordinary observation. Moreover, given any x, not

merely one of the x'a observed, it must be possible to read off from

it the corresponding y, the frequency appropriate to that x.

It is not always accurate enough for our purpose to draw a curve

by 6ye> passing as evenlj^ as possible through the middle of the

points observed in the manner conceived in an earlier chapter. It

is necessary in some way to find an algebraical formula, possibly

even a trigonometrical, exponential, or more complex expression,

which will give the y corresponding to any x desired. This formula

or equation must depend upon the statistics collected : i.e. the
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constants involved in it must be directly and fairly easily computed

from the y'a observed, and the results of all the observations should

enter into the equations wliich determine the constants in order to

make use of the full information at our disposal. In addition, the

method of determining the equation and its constants should be as

general as possible, so relieving us of the trouble of discovering a

new method owing to the failure of the original one at nearly every

trial. Finally, the equation should not be so intricate as to make
the labour of calculating y for any given x too heavy to be attempted

with the ordinary equipment at the statistician's disposal. Once

such an equation is found it is a fairly straightforward proceeding

to trace the curve for which it stands, and it will remain after^\'ards

to test the goodness of fit in some more refined way than by seeing

how closely it passes through the observed points by eye.

When we come to review the shapes of the frequency polygons

or histograms most commonly met, we find that the majority

of them start from low fre-

quency, rise to a maximum
as X. the character observed,

increases, then fall again to-

M^ards zero very likely at a
Fm. (27). . ,

different rate. In fact the

statistics suggest a shape something like that shown in fig. (27)

for the corresponding frequency curve, though we cannot be sure

that it would coincide -with the axis at either extremity. [Cases

do occur where the curve has two or even more humps (maxima),

but we purposely restrict ourselves to the simpler and more frequent

tj^pe described.]

Now the simplest shape to deal with from the algebraical point

of view would certainlj^ be symmetrical in character, corresponding

to statistics ^^'hich rise and fall at the same rate, though this would

not necessarily be the most common shape among the records of

actual life. In order to simplify our i^roblem, therefore, we might

start by making up for ourselves an ideally simple set of statistics

which are jierfectly symmetrical, and see whether we can discover

a process for fitting a curve in a case of that kind. If this prove

successful it might be possible afterwards to adapt the same process

to an unsymmetrical or ' skew ' set of statistics made up in a similar

way. Then finally we should inquire whether actual observations

conform to any of the types of curve discovered, and, if so, how
they can be fitted together.

Now in manufacturing our statistics we must keep before us the
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object at which we are aiming. Given the statistics, what we

want is a formula, algebraical or of some other kind, to fit them.

This raises the possibility of choosing the statistics themselves in

some algebraical form, and such a form is at hand in the binomial

expansion, which is, in fact, one of the first examples of a general

symmetrical expression one meets. Thus

(a+6)2=a2+2a6+62
(a+6)3=a3+3a26+3a62+63

(a+6)^=a'^+4a36+6a2624-4a63+64

(a+6)5=a5+5a^6+10a362^10a263+5ai^+65

(a+6)«=a«+wa«-i6+^^:^^'-^V-262+ .

1-2

n{n- 1 )^26n-2^ ^„6^-i+ 6".

1-2

Clearly all these expressions become perfectly symmetrical if we

put a=b, for they read the same whether we run from left to right

or from right to left.

We have already seen what an important part the binomial

expansion plays in the early stages of the theory of probability :

e.g. (I+I)^". when expanded, tells us at once the proportion of times

on the average we may expect 10 heads, 9 heads and 1 tail, 8 heads

and 2 tails, and so on, when we toss an evenly-balanced coin ten

times in succession ; or again, if p is the probability that a certain

event will happen, and q the probability that it will fail to happen

at one trial, then the probabilities that it will happen p times,

(^—1) times, {p—2) times, ... in w trials are given by the succes-

sive terms in the expansion of ip-\-qY- However, we make no

assumption for the moment as to the values of a and 6, except

that in the symmetrical case with which we begin they are equal,

and we have as the successive terms of (a+^)" '—
n{n—l]

a'\ na'
1-2

Let us suppose that our observed statistics take the above form

so that these terms may be plotted as a succession of ordinates,

i/v y-i' 2/3» • • • > Vn+v associated with abscissae, x^, .Tg, x^, . . . , x^+i,

at equal distances apart measured, say, by c ; for convenience we

may place the origin as in fig. (28), so that

Xi=c, X2=2c, x^=Sc, . . . , a;„^j=(?i-j- i)c,
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and we can then form a frequency polygon, where

-re, ijf-

n{n~\){n-2)

1-2-3 . . . (r-1)

(n— r+2)

are typical values of a pair of the variables x and y, each such

pair defining a vertex of the polygon.

Now in this case, since the statistics have been artificially built

up by ourselves and are not in reality a random selection, they are

Fio. (28).

not subject to errors of sampling and the fitting curve should,

therefore, pass through the summits of all the t/'s, or, perhaps

better, touch each of the lines joining adjacent summits. The

curve only differs from the neighbouring outline of the polygon in

that the latter is discontinuous, it alters its direction relative to the

axis of X by jerks at equal intervals c measured along OX, whereas

the former must rise gradually and continuously and then fall in

the same way. This is one sense in which we mean that the fitting

curve removes the roughness of the observation statistics—it gets

rid of jerks besides filling gaps in the observations.

It will be clear that as n increases and c diminishes (and this is

what we aim at in collecting statistics, though it has not been assumed

in what immediately follows) the discontinuity in the polygon

becomes less and less pronounced and the outline of the figure

approximates more and more closely to the

curve. Moreover this approximation gains in

intensity if we make the slope of the curve at

each appropriate i^oint the same as the slope

obtained by joining up the summits of adjacent

ordinates of the polygon.

(yr^.-yr)

Now the expression

{yr+X-VrMo
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is the measure of the gradient from the rth ordinate to the (r+l)th,

and

yr+x-yr_0''

c

c

= 2/r

n{n—l) {n—r-\-l) n{n—l)

w(n-

1-2

1) (w—r+2)
1-2

-2r+l

(r-1)

1-2

r+1

(n-r-f2)"|

re

If this be also taken as the gradient of the tangent to the curve at

the point midway bet\\'een (x^, 2/r) ^^^ i^r+v Vr+iit calling this point

{x, y) we have, since, in the notation of the differential calculus.

dy

dx
is the measure of the gradient of the curve at this point,

dy Vr+i-yr

dx

=yr
n—2r-\-l

re

And

.T=i(.r,+z,+,)=K^c+(r+l)c]=---(2r+l)

y=l(yr+y,+i)=^^ ^-
^^ {n-r+2)

1-2

Hence

n-
yr—

Thus

2?-+l 2ry

. (r-1)

(n+2)-{2r+l)

r+1
^1^(^+ 1)-

2r

2^

re
?i+2—

—

(w+l)c\ cre n-\- 1

c?a: (n-l-l)c\ ej

But if M'e had started with any other two adjacent ordinates

instead of y^ and y^^-^^ we should have been led to exactly the same

relation connecting tlie corresponding x and y of the required

curve, for r, which serves to particularize the ordinates, does not

appear in the relation at all—their individuality has been eliminated.

The above equation may thus, if we please, be taken as holding

good for, and therefore defining, all pomts {x, y) of the fitting curve :

it is, in short, the differential equation of that curve.

The equation may be slightly simplified by transferring the

origin to the point (w+2)- . , evidently the point 0' in fig. (28)
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corresponding to the maximum ordinate of the polygon or curve.

Algebraically, this merely means that for x we must WTiLe

[(n-\-2)c~]
x-\-- ~ in the equation, which then becomes

2 J 1

dy 2y f 2x\ Axy

dx (w+l)c\ c/ (w+l)c2

We may pass to the equation proper of the curve by integration.

Thus, separating the variables,

lxdx=0.
J y (n+1)

2x^
Therefore, log t/+-^-— +A=-0,

{n-\-l)c^

where A is a constant.

Hence y=y^e'-''''"<''+'^\

where ?/q is a new constant.

This may be WTitten

y_y^e--/^-, . . . (1)

where a^={n-\-l)c^j4:, and it is called the 2)robability curve or normal

curve of error*

Let us now see whether the ^jrocedure so far followed is applicable

in the case of an unsymmetrical or skew distribution of statistics.

With this object we will suppose the frequencies of observations in

successive groups to be represented by the corresponding terms in

the expansion

and as before we can form a frequency polygon by joining the

summits of the ordinates

n(n—l) „ „

yi=p''> yt=nv''-% 2/3=^-^~i^ '"-r. • • • . yn+i='t,

[* Karl Pearson's method of getting the normal curve equation has been
adopted as tlie basis of the above discussion, in preference to that usually

followed, which develops the curve also from the binomial expression but some-
what on tlie lines of Laplace and INjisson. They showed that the sum of all the

terms lying within a range t on either side of the maximum term in the expan-
sion of (p + q)" is approximately

1

^/2w<7

[+t

J-t

where (r= s,l{n2)q), whence the equation of tlie curve is derived. (See Historical

Note at the end of Chapter xviii. )]
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erected on the axis of x at distances from the origin given by

the figure being very similar to that in the symmetrical case.

The gradient of the fitting curve where it touches the join of

(^r> Vr) to (^,+1, Vr^y) is given by

dx c

and we must try and express the right-hand side as before in

terms of {x, y), the co-ordinates of the mid-point of the line joining

(^r. y,) to (XV+I, yr+x).

We have

dy_\

dx c

'

n{n-\). .

.

in-r+l)^n-Y_ ^(^-1) • • • (^-^+2)
n_,.+Y.

1-2 1-2 .. . (r-1)
1

^n_Y-i n{n-l) (w—r+2)
1-2 (r-1)

n—r-\-l
q~p

Also

2x=x^.-\-Xj.^i=rc-\-{r-\- l)c=^{2r-\-l)c

?i('/i— 1) . . . (/I— r-f2)
2y=yr+yr+i= -^r^^^ ,—7^— • p

1-2

Thus

dy_2y/n—r-{-l

dx c\ r
q-p

)/(

(r-1)

w—r+1

n-Y-i 7i—r-\-l
,

q^p
r

g-^p

=^[{n+l)q-r{p+q)]![{n+l)q+r(p^q)]
c

2y,
^[2{7ii-l)qc-ip-{-q)i2x-c)]![^in-i-l)qc+{p-q){2x-c)].

This, being true for all such pairs of values of x and y, is now in a

form independent of any particidar point on the curve we seek
;

in other M'ords. it may be taken as the differential equation of the

curve, and it is evidently of the type

dy ia—x)

dx {p-\-yx)

where a, /3, y involve only p. q, n, etc., the constants of the distri-

bution we set out to fit.
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The equation is simplified if we transfer the origin to the point

(a, 0), when it becomes

dy^ yx _^
• dx yx-\-h

where 8=j3+ya.

To integrate, separate the variables as before :

{dy

y

Therefore,. log y+lf?Z^±^~^dr=0
yJ y.r-j-S

log 2/+^-- log (ya-+S)+A=0,
y y

where A is a constant,

or j/=Be-^^^(y.T+8)%

where B is a constant.

It may be written

y=y„e-''^(l+^V' . . . (2)

where A;=l/y, a=8/y, and y^ is a new constant.

This, then, may prove a suitable type of curve to fit a set of

statistics forming a skew frequency distribution, but the question

now arises whether equations (1) and (2) are the most general

types possible. Clearly (1) is only a particular case of (2) obtained

by making 2^=9, and, this being so, (2) may itself be a particular

case of some still more general type.

Light may be thrown on this if we consider the geometrical

bearing of the differential equation obtained in the last case :

dy yia—x)

dx j8+y.r
(3)

The presence of y and {a—x) in the numerator of the right-hand

dy
side of (3) shows that — vanishes when y=0 and when .r=-a, i.e. the

dx

curve touches the axis of .r ^^hf ro the two meet and there is a

maximum point on the curve at .r=^a. (Since a is the particular

value of the organ or character x for A\hich the frequency is a

maximum, a is of course the mode.) Now these two characteristics

are the very ones to which we a\ ished to give symbolical expression

since they serve to describe in broad outline what was agreed to
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be the trend of the majority of frequency distributions—the rise

from zero to a maximum, at first gradually, then faster, and, after

passing through the maximum, the fall to zero again, generally at

a different rate.

As to the denominator of equation (3), the corresponding equation

for type (1 ), before the origin was changed, was similar to equation (3),

except that it contained no x term in the denominator, and that is

readily understood when we note that y is a multiple of (p—q)
and thus vanishes when p—q. Now, if from (3) we get a less

general type of curve by dropping the x term in the denominator,

we may perhaps get a more general type by adding an x^ term, and

even an x^ term, an x* term, and so on. In fact there seems no

reason why the denominator should not be any function of x, say

f{x), which, however, we shall suppose for simplicity capable of

expansion in a Maclaurin's series of ascending poAvers of x which

converges quickly.

We are led to propose, therefore, as more general than C3), the

differential equation

dy_ yjx+b)
^

^

dx px'-\-qx^r

We stop at X' in the denominator because it has been found, if we
may anticipate results to save needless labour, that beyond this

point the heaviness of the calculation involved and the decreasing

accuracy of the higher moments that have to be introduced out-

weigh any other advantage gained. The curve or set of curves

resulting from the integration of equation (4) is knoAATi as Karl

Pearson's Generalized Probability Curve, and their author has

stated that, while it comprises the two other types as special cases,

it practically covers all homogeneous statistics he has had to deal

with.

Just as the differential equations in the first two cases considered

were related respectively to the s3aiimetrical and the skew binomial

expansions, so is equation (4) related to the hypergeometrical

expansion

the successive terms of which express the probability that r black

balls, (r— 1) black balls and 1 white ball, (r— 2) black balls and

2 white balls, . . ., r white balls, will be drawn from a bag contain-

ing pn black balls and qn white ones, where {p-\-q)=^\, when r balls

are drawn in all, each being replaced before the next is drawn.
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If the terms of this expansion are represented by ordinates of

which the summits determine a polygon as in the binomial eases,

the corresponding expression for the gradient of the curve at any

point is given by an equation of type (4). We need not go over

the detailed proof of this statement since it follows precisely the

same lines as in the previous cases.

The method of integration of the equation

dy_ y{x-\-b)

dx px--\-qx-\-r

depends upon the nature of the roots of the quadratic in the

denominator which may be Avritten

px'-\-qx-\-r=p
\4p'^ pi_

=P[(-si-
4r2 q^ / 52

q- 4:pr ^ ipr

=P[(-4)"-
4r'

'

where K^q-j4pr, and it is evident that the quadratic splits up into

real factors if /c(/c— 1) is positive. This is the case when k has any

negative value, or when it is positive

and greater than 1, the truth of which

may be seen more efifectively if the

curve

?/=«(«— 1),

Y

II

K- / K-*r(>\)

o\ /K=1 k
K=0^ ^

Fia. (29).

IS

a parabola symmetrical about the line

K=\, be drawn, fig (29), by plotting

y against k.

Further, the product of the roots of the quadratic

px--^qxA^r=^^

r_4/-- cf' _4/--

p q- 4pr q-

so that the roots when real will be of the same sign if k is positive

and of opposite signs if k is negative. The boundary lines

/c=0 and «= !

thus divide the whole field into three parts, as shown in fig. (30), in

one of which the roots are real and of opposite sign, in the next
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the roots are imaginary, and in the third the roots are real and of

the same sign. At the boundaries we get particular cases as

follows :

—

K=0 : this requires q=0, since /c=q-l42)r, which makes the

roots of the quadratic equal but of opposite sign, unless ^=0 also,

and in that case both roots are

infinite
;

«= 1 : tlie roots are real and equal

and of the same sign
;

«= oc : this requires p=0 or r=0

;

in the former case one root of the

quadratic is infinite, and in the

latter one root is zero.

Y

<*-, =n 2
/

'k> \
- 13 /

^ \ c
.tl

v h
=.A

II

^
>^ v^

o "^ OD
~ c e eo

\ ""^ ^
/

II

to g \a: / Z c
0=

/

o
/

IT

K

Fio. (30).

Thus, returning to the differential

equation, the curves which result

from the integration

fch/ f {x-[-b)dx

J y J px--\-qx-\-r

are of different types according to the value of /c, which is therefore

called the criterion.

Type I.—K—^'. Roots of px--\-qx-{-r—^ real and of ojrposite sign.

In this case we may write

and so get

]}X~^qx^r^^p{x-\-a'){x~^')

{X'\-b)dx

; y .' via
^0,

p{a' -^x){^'— x)

or, transferring the origin to the point (
— 6, 0), the mode, we have

(dy f xdx

J~y Jp{a-b-]'X){fi'-\-b-x)

'dy
. I xdx

=0.

or
J y J i){a

where

Therefore, lo

+x){^~x)

dx . 1

^0,

1 ; a ax I I

pJ a+x a-\-B pJ I

^ dx

a=a

1

pJ a+x a+j8 ' pJ ^—x a+/3

where A is a constant.

A=0,
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Thus log y=^-^—^a log (a+a-)+iS log (^_;r)]+log B,

where B is a constant,

whence y=B(a+.r)p(«+«(^— a;)''("+^)

i.e. yM'+a) {'-^) •
f'^'

where i/= l/p(a+^) and y^ is a new constant.

This is a skew curve of limited range, bounded by the lines .r=—

a

and a;=+jS, with the mode at the origin.

Type II.—«:=0. 9=0, but not p=0. Roots of 2JX^-{-qx-]-r^0

equal and of opposite sign.

This curve is just a particular case of type I., Avhich reduces to

/ x^ \
^"^

y=yo 1---2
. • • • (6)

symmetrical about the axis of y (because for any value of y there

are two values of x, equal and of opposite sign) and of limited

range bounded by a:=—a and x= -\-a, with the mode at the origin.

Type III.—K=oc.* p=0, but not r= 0. One root of2)x'^+qx-\-r=0

infinite.

This is the skew binomial case over again. It may be also de-

duced from type I. by making one root, say jS', tend to infinity.

The curve then takes the form

because j8=^'+ 6, so that ^ tends to infinity with /3'. Hence

l\x-

a/ x^co '+A

where A=—^/x.

Thus y=y (l+^y^e"", ... (7)
\ a

'

a skew curve limited in one direction by the line x=—a, with the

mode at the origin.

[* Although theoretically this type corresponds to an infinite value for k, in

practice it will as a rule give a reasonable fit provided k is numerically greater

than 4. (See W. P. Elderton's Frequency Curves and Corrdation, p. 50)].
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Ty2>e IV.—k -]-''"' and < 1 . Boots of px^ 4- g-a; -f r= imaginary .

Put «(«— 1)=— A", and the differential equation then leads to

rdy r {x-\-b)dx

J u

Transfer the origin to the point
(
—— ,

X'{-b—-' ]dx
2p/

log ,==.4+^1 log (.=+4'!iV(^ -/-,)/, tan- ^2p \ q- / \-p 2p'/2rA 2rA

where A is a constant.

X2\-"> -,-tan

Therefore, y=yj If „ e * ... (8
a

,
2rA 1 If, qwhere a=— , m——— , v=—— o—-^
q 2p ap\ 2p

and ?/o is a constant.

This is a skew curve of unlimited range in both directions. The

position of the mode is found by putting — =0 in (8) after differ-
dx

entiation, or, what comes to the same thing, is seen by direct refer-

ence to the differential equation itself. Thus the distance of the

mode from the origin

Type V.—K=\. Roots of px^-\-qx-\-r=0 real and equal.

The equation to integrate becomes

{dy
f

{x-'rb)dxlU
' '^<
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Transfer the origin to the point I
—— , ), and this becomes

y J ^j,r-

log t/=A+- log x-^.ib-
,

p p \ 2pjx

where A is a constant.

Therefore, y--^tj^x^''Pe ^'^ ^^'^^

y--yoX-'e-v/^, . . , (9)

where s—— !/}), y= ( 6—— ), and ?/(, is a constant.

Here x cannot become negative, so that the curve is skew and

limited in one direction. The distance of the mode from the origin

Type VI.—K-{-'" and >1. Roots of px-'^qx-^r=0 real and of the

same sign.

Equation becomes

fdy I {X'^b)dx

y J p{x-^a){x+^)

logy= b-a 1 (6-iS) 1

jpi^—a) .T+a l'>{a-~fi) x-\-fi_

dx

=A+—L_[(6-a) log (.t-^a)- (6-/3) log (.r+^)].
p(^-a)

where A is a constant

;

or, transferring the origin to (— jS, 0),

log 2/=A+~^^^[log j.r-(^-a)p-log x^^

y=yo(x-ar-x-^', • • . (10)

where a=:^-a, qz^{b—a)lp{^—a), qi= {b-^)ip{^—a), and y^ is a

constant.

This is a skcAv curve bounded by x—a in one direction. The

distance of the mode from the origin^— (6—j8)=agj/(g'i— ^a)-
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Type VII.—K=0, q=0,p=0. Roots ofthe quadratic px--\-qx+r=0

both infinite.

This is the symmetrical binomial case over again and the integra-

tion reduces to

fdy_

'
y

J^-'d.,
J r

or, transferring the origirI to (- b, 0),

1 y
-\>

logy--=A+ ^x\
2r '

where A is a constant.

Therefore y-=yoe . (11)

where y^ is a constant and ct-=— r.

This curve, the normal curve of error, is symmetrical about the

axis of y, where mean and mode coincide, and it is of unlimited

range on either side of it.

K



CHAPTER XVI

CURVE FITTING (continued)—THE METHOD OF MOMENTS

FOR CONNECTING CURVE AND STATISTICS

We have now completed the first stage of the discussion upon which

we embarked : we have found by the apphcation of general prin-

ciples various types of curve, represented by different equations,

which are said to fit more or less satisfactorily a considerable number

at all events of frequency distributions composed of homogeneous

material.

Our next task is to pass from the general to the particular, to

see how to set up a connection between an actually observed fre-

quency distribution and the appropriate theoretical curve. This

again seems to break up into two parts—(1) to find a way of deciding

which type of curve to adopt in a particular case
; (2) to determine

the constants of the curve in terms of the observed statistics ; but

since the criterion, k, which distinguishes one type of curve from

another is itself a function of the constants of the curve before

integration, it follows that the solution of the first part is incidental

to that of the second.

The general method proposed for determination of the constants

of the curve in terms of the observed statistics is the now well-known

method of moments due to Karl Pearson, whereby the area and

moments of the fitting curve are equated to the area and moments,

calculated from the statistics, of the observation curve.

If a frequency table be drawn up (see Table (40)) showing the

number / of observations corresponding to the deviation x of each

value, or group mid-value, X of the character observed from some

fixed value, the expression

^'Ji^^-Ji+ -h^rfr+ •
•

is called the first moment of the distribution with reference to the

fixed value, which may be termed the origin. Similarly,

^Vl+^"2/2+ • • • +-^'-r/r+ • • •

is called the second moment, Ux^, the third moment, Ux*f, the
194
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fourth moment, and so on. The following notation will be found

convenient for working purposes :—

vi ^ Z"/ '

'' ' N 2"/ ' * *
*

Undashed letters are reserved for use when the distribution is re-

ferred to its mean as origin, in other words when the deviations of

the X's are measured from the mean X.

Table (40).

Deviation. Frequency.
First

Moment.
Second
Moment.

Third
Moment.

Fourth
Moment.

X,

Xj
A

'fr ^-rfr

^2/2

^\fr

Totals . N N'l N'2 N'3 N'4

Now each N in the frequency table is the sum of a number of

discrete quantities which only tend to form a continuous series as

the class intervals are made very small and the number of observa-

tions is made very large. The corresponding frequency polygon

or histogram, if we drew it, would at the same time tend to become

a continuous curve, the observation curve. If that limiting stage

were attainable, if we could actually get an infinitely large sample

of observations in which the character observed changed by infinitesi-

mal amounts, we could then replace the isolated /'s of observation

by the corresponding ?/"s, the ordinates of this observation curve,

and to get the moments we could write instead of the discrete

sums

Ef, Sxf, Ex'^J, . . .,

the continuous integral expressions

jy'dx, jxy'dx, jx~y'dx, . . .,

taking in the whole sweep of the curve by integrating throughout
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the range of deviation x. We should then have, if areas and

moments are equated according to Pearson's method,

jydx=jy'dx, jxydx=jxy'dx, jx^ydx=jx-y'dx, . . .,jx"ydx=jx^y'dx,

where y is the ordinate of the fitting curve corresponding to the

ordinate y' of the observation curve.

In practice, however, it is impossible to go to this limit : we
cannot deal with an infinitely large sample, so we take as large a

sample as is convenient, calculate the rough moments, N, N'^, N'2 . . •,

and find approximately what corrections or adjustments are neces-

sary to obtain the moments of the observation curve, a procedure

which is really equivalent to the determination of the area of a

curve when only a number of isolated points thereon are kno^sn.

For the full analytical justification of the method of moments
the reader is referred to Professor Pearson's original paper. On
the Systematic Fitting of Curves to Observations and Measurements

[Biometrika, vol. i., pp. 265 et seq. ; also vol. ii., pp. 1-23], where

it is shown that ' with due precautions as to quadrature, it

gives, when one can make a comparison, sensibly as good results

as the method of least squares.' The latter, which is the traditional

way of approaching all such problems, is shown to be impracticable

in a large number of cases, either because the resulting equations

cannot be solved, or, when they are capable of solution, because

the labour involved would be colossal.

Let us consider next how to deduce the area and moments of the

observation curve from the statistics, in other words how to get

jy'dx, jxy'dx, jx^dx, . . .,

the integrals being taken throughout the range of the curve, when

we know the frequencies corresjaonding to only a certain number

of values or elementary ranges of the deviation x.

Now the character observed may be capable of the deviations

actually recorded and of no values in between, e.g. measuring

deviations from ' no rooms ' as origin, we might have /^ one-roomed

tenements, /g two-roomed tenements, /g three-roomed tenements, but

there could be no such thing as a two-and-a-half or a three-and-a-

quarter-roomed tenement ; on the other hand, any recorded devia-

tion, Xf, may be only the mid-value (used as a convenient and

concise approximation) of a group of observations including all in

the continuous range from (Xj.— ^) to (Xy+^), where unit deviation

is the class interval : thus we might have /^ males deviating by

+ 6 in. from 5 ft. (comprising all the males observed between 5 ft.
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5^ in. and 5 ft. 6| in.),/^ males deviating by +5 in. from 5 ft. (com-

prising all males between 5 ft. 4| in. and 5 ft. 5| in.), and so on.

These two cases must be discussed scjoarately.

(1) When the observations are centred at definite but isolated values

ofx.

The problem is to find

j.v"y'dx

(the nth moment) when we have no definite curve given but we
know the values of x and y' at a number of isolated points, say

(^'o> y'o)^ (-^"i. y'l), (•^•2' y'2)^ • • • > {'^p> y'p)-

This is equivalent to discovering a suitable ' quadrature formula,'

i.e. a good approximation to

jzdx

<-/

Fig. (31).

h \ h 2 h3 p h

{P^\]h >

Fig. (32).

in terms of knowTi points

(x-o, So)' ('^i. 2=1), (.r., ^2). • • • (''^;.> 2j,).

where we have Avritten z in place of .f"?/', and we may generally

take the ordinates to be at equal distances, A, apart. Several

such formulae have been suggested and they vary according as the

2's are situated at the ends (fig. (31)) or at the centres (fig. (32))

of the h intervals. The second type is perhaps the more useful of

the two, and we shall work out one formula in illustration of it.

Consider the first five of the given points, namely,

(.To, eo)> K. 2i)> • • • (•^4> 24)-

As a simple ' curve of closest contact ' let us find the parabola of

type

z=CQ^c^xl'h-^c.-^x-lh-^c^x'^llv'^c^x''l'h'^ . . (1)

which goes through these five points, where the c's are constants to

be determined. We may without loss of generality take the axis
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Zn Cn

24= Co+ 2Ci+ 4C2+8C3+16C4.

of z to coincide with the middle one of the five ordinates, so that

the known points on the curve become

{-2h, Zq), {-h, Zi), {o, Zg), i+h, Z3), (+2;^, 24),

and on substitution in (1) we get

2^0=^0— 2C1+4C2—8C3+I6C4. 2;i=Co-Ci+C2— C3+ C4.

2:3= Co+ Ci+ C2+ C3+ C4.

These equations are just sufficient

uniquely to determine the c's, and

hence the paraboHc curve of closest

contact, in terms of the five given

points, but for our purpose it is not

necessary to find all the c's. Suppose

our object is to find the area of the

shaded portion of fig. (33) in terms

of the co-ordinates of the five given

points. This area
A O +/i +2/i

•+ /'/2

=
/ zdx
hft

'+ 1,12

~^
-h/2

^^" "^ Ci;c/A+ c.^x-/h-+ c^x^/h^+ CiXyh^)dx

+hl2

_ -hl2

CqX+ Cix-I2h+ C2X^I3h^+ C3xy4:h^-\-c^xy5h^

But the equations between the z's and c's at once give

22= Co, 20+ 2:4= 2(Co+4C2+16C4), Zi+2;3=2(Co+ C2+ C4).

Thus

Therefore

8C2+32C4= (2o+24)— 2Z2

2C2+ 2C4= (Zi+ 23)-222

24C2= 16(2i+23)-(2o+24)-3022

24C4= (2o+24)-4(2i+ 23)+ 622.

Hence, by substitution, the shaded area becomes
'•+hl2

2Zia;=^[z2+2¥sjl6(Zi+23)— (2o+ 24)-3022|

+T9Vol(2o+ 2;4)— 4(21+ 23)+ 622I]

=g^^[517822-17(2o+ 24)+ 308(2,+ 23)].

r+hi2

J-h/2

(2)
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these particular ordinates being appropriate when the axis of z

coincides with the z^ ordinate.

Similarly, it can be shown that

r-f-3A/2 )i

by finding the parabolic curve of closest contact through (0, z^),

{h, Zj), (2h, Z2), {Sh, 23), the axis of z coinciding now with Zq.

Now we require
|

zdx

(see tig. (32)), and this may be obtained by splitting up the integral

thus

+ + +...+ +
J-hl2 hhft .'bhjl •(i'-?V< (p-i)!'

and applying the formulce (2) and (3) to evaluate these sub-integrals.

The first and last come under head (3), while all the rest come

under (2). In fact, we fit together portions of curves of parabolic

type based on the successive groups of points

(0, 1, 2, 3), (0, 1, 2, 3, 4), (1, 2, 3, 4, 5), (2, 3, 4, 5, 6), . . .

(p-4, p-3, p-2, p-l, p), {p—S, p—2, p—l, p),

and as the points overlap, in the sense that neighbouring groups

have points in common, the curves dovetail into one another and

so provide a fairly good approximation to what we want in the way •

of integral expressions giving areas based upon the positions of

certain known points.

We have, then :—

f3h:2 Ji

zcIx=--[21zq-\-11zi+ 5z,-z^]
J-h!2 24

zdx=—-[ollSz,- 17(2o-f~4)+ 308(2i+23)]
i3;i/2 o / dO

i''"'\dx=^UollSz,-ll{z,+z,)-^Z()8{z,-hz,)]
hhft o760

/•9/1/2 }>

zdx=—-[o\18z,-\l{z.,+z^)^^m^^-VH)'\
.'nii 5760

j^''^''zclx=---[5ll8z,,_^- 17(2;,,_4+Zp)+308(2,,_3+Zp-i)]
.'(p-i)h 5760

<j)-i)h 24
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Hence, by addition,

/:

(p+i)h h
2fZx=—-[6463zo+4371zi4-6669z2+5537z3+64632„

hj2 5760

+437l2^,_i+6669v2+5537z^_3]

=;i[M220(2o+2^)+0-7588(2i+2^_i)+M578(z2+V2)

+0-9613(23+z^,_3)+ (24+25+ . . . +2^_4)].

In effect, since z—x"y', this means that to calculate the moments

from the given statistics we may work simply with the observed

ordinates or frequencies, as drawn up in Table (40), so long as we

modify the first four and the last four by multiplying them by

suitable factors. In particular, when the frequencies at the be-

ginning and end of the distribution are very small, that is to say,

when there is high contact at each end of the frequency curve,

we may dispense even with the modifjung factors also since we

may assume that before the first and after the last ordinate observed

there are others which are so small as to be negligible.

Thus, given high contact at each extremity of the observation

curve, we may write

/:
zdx=hZz,

-1x11

or, if we take the class interval as unit in measuring x so that h=l,

this gives

jyx"^dx=I!fx"^,

where the integral may now be taken as referring to the fitted

curve, since the moments of the theoretical and of the observa-

tional curves are to be equal, and the integration traverses the

extent of the curve. When, however, there is not high contact at

the extremities the same equation holds good if we multiply the

first and last of the observed /'s by 1-1220, the second and the last

but one by 0-7588, the third and last but two by 1-1578, and the

fourth and last but three by 0-9613.

In particular, when n=0, integrating throughout the curve,

jydx=i:f=l^, . . . (4)

Avhich, being interpreted, means that the area contained between

the fitting curve and the axis of x measures the total frequency of

observations, modified if necessary.

Also, when the observation moments have been adjusted, if we
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A;\Tite jx and fx' in place of v and v' in the notation previously pro-

posed (see Table (40)), integrating again throughout the curve,

jxydx/jydx=I!xf/'N=iJi\, . . . (o)

and the geometrical interpretation of this is that the foot of the

ordinate passing through the centre of gravity of the area between

the fitting curve and the axis registers the deviation of the mean X
from the fixed origin.

If deviations are measured from the mean of the distribution

as origin 2^(0^/) vanishes (see also Appendix, Note (5)) so that/Ai=0.

Generally, we have, ^vith the same limits of integration,

[xHjdxl\ydx =Z'a:"//N =/a' „,

and when the distribution is referred to its mean as origin the

right-hand side is written ju„.

We now pass to the second case.

(2) When the observatioyis appear in groups ranging between

definite values of x, the range of each group as a rule being the same

in extent.

Since the usual procedure here is to treat each member of a group

as though it were centred at the x at the middle of that group

—

e.g. a group of school girls

each of some weight be-

tween 7 stone and 7 stone

5 lbs. would be treated as

if all its members were of

weight 7 stone 2-5 lbs.

—

this case evidently reduces

to that already considered.

It is necessary, however, to

examine what correction

must be made for assum- ^

ing that all the members ^"__
of the same group have

the same x.

Consider again the expression

\x"y'dx.

The contribution to the ?ith moment coming from the z^ group of

observations (see fig. (34)) may be taken as the portion of the

h\ , / h\
,

where

/

Fig. (34).

above integral between limits ixQ-\-rh—-) and
( XQ-\-rh-\-

2/ V 2
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Xq is the distance of the centre of the first group from the

origin 0.

But, since all the observations in the same group are treated as

if they had the same x, by (2) this integral may be written

^[5178(.^•o+r/^)»-17}(.^o+7^/0"+ (ro+r+2^)";•

+ 30S{(.r,+~r^lhy-i-{x,-i-V+lhr}l

where /^ is the frequency of observations in the group, and this, on

expansion in powers of {xQ-\-rh) and h,

=hf,{Xo+rh) "+ ^[240n{7i~imx,-hrhr-'
57oU

+ 3n(7i— l)(w-2)(w-3)/i*(.ro+r/i)"-*+ . . .]•

When we sum for all groups, the expression

r =

gives evidently the 7ith moment of a set of isolated variables,

/o) /i) A' • • • fpy ^^^^ ^y Case (I) it may therefore be taken as

being practically equivalent to the required wth moment of the

observation curve, assuming that there is high contact at each end oj

the curve.

The remaining terms,

-'P Mr
mOn(n-l)h^Xo-hrh)''-^-

5760
/ V r

;

-^3n{n-l){n-2){n-3)h*{Xo+rh)''-^+ . . .],

may accordingly be taken as the correction required.

When ri=0, these terms vanish, so we infer, just as in Case (1),

that, when the integration is taken throughout the curve,

jydx=i:f=lSi, . . . (4) bis,

or, the area between the fitting curve and the axis of x measures

the total frequency of observations when the class interval h is

treated as the unit in measuring x.

Again, when n^=l, the corrective terms vanish, so we likewise

infer, as in Case (1), that, with the same limits of integration,

fxydxljydx=Zrf/N=fji\, . . . (5) bis,

and that /,ii=0.

When n=2, the reduction of the corrective terms gives

h-
second unadjusted moment^second adjusted momenta

—

^hf,
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or, dividing throughout by Zhf and bearing in mind the notation

adopted with the mean as origin,

/^2= *^2-r2' • • • (6)

when A= l as before.

When ri=3,

third unadjusted moment =third adjusted momenta - Uf,.{.rf,^rh)

;

4

but, if we refer the deviations to the mean of the distribution as

origin, 2Jf^.{xQ-\-hr) vanishes.

Therefore, 1^3=^3 » « . (7)

When 71=4,

fourth unadjusted moment

=fourth adjusted moment-} 2Jf,.{xQ^rh)--\-—Zhf.
L 80

Hence, dividing through as before by Uhf dnid taking ^ as 1,

1^4 =/i.4+ 2/^2+ 51>"

Therefore,
H-i .-hu+± (8)2' 2 > 240

To sum up, the general procedure in Case (2) is to calculate

N, N\, N'2, N'3, N'4 directly from the statistics and so deduce

v' 1, v'2, v'3, v' i- Then, transferring the origin to the mean, the v's

become i/^, j/g, V3, v^ (see Appendix, Note 5), and finally the cor-

rected /i.'s are given by

/^l=0' /^2= i'2— i'

/^3= I'3' ^*= '^4— ^''2+ 240
•

These adjustments, originally due to Dr. W. F. Sheppard * [Pro-

ceedmgs of the Lond. Mathl. Socy., vol. xxix., pjj. 353 et seq.], are

applicable only when the

curve of distribution has

high contact at each ex-

tremity as very frequently

happens. To this case

w^e shall confine ourselves,

and when it does not hold

the unadjusted moments

may be used as a rough approximation failing a more refined but

also a more intricate adjustment.

The way in which the three chief kinds of average are related to

[* To obtain Sheppard's adjustments we ha^ e followed the method indicated

in Elderton's Frequency Curves and Correlation, pp. 28, 29.]
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the fitting curve is of interest and deserves recapitulation. Whether

the observations are classed as in Case (1) or as in Case (2) :

—

(1) the ordinate drawn through the highest point of the curve,

since the frequency there is a maximum, fixes the modal

value of X ;

(2) the median X is determined by the ordinate bisecting the

area between the curve and axis, since there are an equal

number of observations on either side of it ; and

(3) the mean is determined by the ordinate through the centre

of gravity of the area between the curve and axis.

We have still to show how to express the constants of the fitting

curve in termsof the moments calculatedfrom the given statistics, and

it will be convenient now to make our approach from the other end.

Take the general equation of the fitting curve, express its con-

stants in terms of its moments, and substitute for the latter the

values determined from the statistics, since the basis of the fitting

is the equalization of the moments of the observational curve and

of the theoretical curve. This will enable us to determine k, the

criterion for fixing the type of curve suitable to the given distribu-

tion. When the type has been fixed it is, as a rule, not a very

difi&cult matter to express the constants of the particular type

again in terms of the observational moments.

Now the general differential equation of the fitting curve was

dy^ y{x-\-b)
^

dx px'^'{-qx-\-r

hence

j{px'-\-qx^r)dy=jy{x^b)dx,

where the integration is to traverse the complete curve.

Therefore, multiplying both sides by a;",

j{px''+^+qx''+^+rx'')dy=j{yx''+^-\-byx'')dx]

or, if we integrate the left-hand side by parts

[(^a;"+'-+ gra;«+i+ ra:" )y] —jy{n-\- 2^a;"+i+ 7i+ Iqx"+ nrx''-^)dx

=j{yx^+''^-\-byx^)dx.

But the expression in square brackets vanishes at both limits if

we suppose y to be zero at each end of the curve, so that the equa-

tion reduces to

{l+p'n^2)jyx''+^dx+{b+ qu^l)jyx"dx+r)ijyx"-'^dx^0, ... (9)
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Now if deviations are measured from the mean of the distribution,

we have

jyxdx='Nfjii^O, jyx-dx=Nij,2, \yxhlx='i:iiJL^, etc.,

and therefore, putting n=3 in the above relation,

(l+5i))N/x,+ (6+4g)N/z3+3rN/Lt2=0

;

put n=2, (l+42))N/x3+(6+3^)N^o=0

;

put w=l, (1+3^)N/X2+^N=0

;

put w=0, {6+(?)N=0.

Thus b=— q, and, on substitution in the other three equations, we get

5/x42>+ 3jLt3g+3^2r+^4 =0,

Sfx^p + r+fji,=0,

three simple linear equations to find p, q, r, the solution of which

leads to

(/=— 6=—/i3(/x4+ 3/A-2)/(10/x2/^4— IS/x^a— IV's).

We have thus expressed p, q, r, and b, the constants of the fitting

curve in terms of the moments of the observed distribution, but the

results may be rendered more concise by WTiting

^i=fiyH'% ^i=H'i'H-'2' ' • • (10)

whence

p— (2^2-3^i-6);2(o^2-6^i-9). .... (H)

g=-6= -V(i^-A)-(i82+3)/2(5^2-6^i-9), . . (12)

r= -/i2(4i82-3j8,)/2(5^2-6i8,-9) .... (13)

And K, the criterion for fixing the type of curve suitable to the

statistics given, is immediately deduced from

K=q-/4:2)r

=^,{^,+Sr/4{4^,-3^,){2^,-S^,-6) . . . (14)

Also, since — vanishes when x=— b, this fixes the mode relative
dx

to the origin. But the origin is now at the mean, so that

mode-mean=-6=- V(/^2i8i) • ()S2+3)/2(5j82-6j8i-9) (15)

And
skewness=(mean— mode)/S.D.

=6/V(M2)

=Vi3i(i82+3)/2(5iS2-6^,-9) . . . (16)



CHAPTER XVII

APPLICATIONS OF CURVE FITTIJfG

We are in a position now to test the application of these principles

to given frequency distributions and we shall start by trying to

find a curve to fit the record of marks obtained by 514 candidates

in a certain examination (see p. 25).

Example (1).—This example is chosen because it turns out,

when we come to evaluate k, that it is well fitted bj' the normal

curve, Type VII, which is one of the simplest and at the same time

the most important of all the tyipes discussed. Before we start

the numerical part of the work it will be well to express the

constants y^ and a of this curve in terms of the moments of the

distribution.

The equation of the normal curve is

X-

y=yoe"2^'.

If N be the total frequencj^ wc have by equation (4) bis, p. 202,

r-fco

N=l ydx
J -co

^Voj e-='''-''-dx.

J -co

dx
Put x-l2a-=^^-. so that — =ct\/2 and when a:=00, |=00 also.

Thus N=?/oa\/2 e-'V|
.'-co

z=y(^aV2V7T (see Appendix, Note 8)

= V(277)c72/o . . . (1)

?06
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/+00 / r + ca

/^2— /
yx-dx \ ydx

J-(X> I J-oo
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2j/„

"2"'N

since vanishes at both limits.

Therefore, yL^= '\/'2
. ay^VTr . cr-/N=cT-, by (1).

In fact, a is simply the S.D. of the distribution.

And yo=N/\/(27r) . a.

Table (41). Distribution of Marks obtained by 514 Candi-

dates IN A CERTAIN EXAMINATION.

Mean No.
of

Marks.

Deviation
from 33.

Frequency
of

Candidates.

First

Moment.
Second
ISIoment.

Third Fourth
Moment. Moment.

3

8

13

18

23

28

33
38

43

48
53

58

63

{X)

-6
— 5
-4
-3
_2
-1

+'l

+ 2

+ 3

+4
+ 5

+6

(/)

5

9

28

49
58

82

87

79

50

37

21

6

3

(fa)
- 30
- 45
-112
-147
-116
- 82

+ 79

+ 100

+ 111

+ 84

+ 30

+ 18

(fa')
180

225

448

441

232

82

79
200
333

336
150

108

(fa')
-1080
-1125
-1792
-1323
- 464
- 82

+ "'79

+ 400

+ 999

+ 1344

+ 750

+ 648

(fa*)
6480
5625
7168
3969
928

82

79

800

2997

5376
3750
3888

— — 514 -110 2814 -1646 41,142
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The first 4 moments referred to 33 as origin and with the class

interval, 5 marks, as unit of deviation, are

-110/514, 2814/514, -1646/514, 41142/514.

The arithmetic mean of the distribution

=33+5:k

=33+5(-ii|)

=33-5(0-214008)

=31-92996.

The second, third, and fourth moments referred to the mean as

origin, and retaining five marks as unit of deviation, are given

(see Appendix, Note 5) by

7;2=2814/514-.t2_5-42891

1,3=- 1646/514- 30=1-2-^3 =,0-29296

After making Sheppard's adjustments

these become

/X2=5-34558, /z3=0-29296, )U4-76-11436.

Thus iSi^/x-a/jiASg =0-00056, ^2=/^4//>t-2=2-66365.

Hence «=^i(^2+3)V4(4i32-3^i)(2^2-3j8i-6)

=(0-00056)(5-66365)2/4(10-65292)(-0-67438)

= -0-00063.

Since k and jS^ are small and ^2 ^o^s not differ greatly from 3, making

p and q small, we may fit a normal curve to this distribution.

The appropriate normal curve is

where ct-=/X2 =5-34558 (5 marks as unit),

2/o=N/V(277/x2)=514/\/277^(5-34558)^=88-6903.

Hence the required curve has for its equation, writing results to

three significant figures.

Now the mean of the distribution is at 31-92996, where the

central ordinate of the normal curve is erected, and the distance

of any x, say ^33, from this point

= (33— 31-92996)/5 (expressed with 5 marks as unit)

=-0-214008.
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Any other x may be found in the same way and y can then be

deduced from the equation of the curve by taking logs, thus

log.,,=log„88.6903-^-^^^log„e

=1-9478762- (0-0406218)x-.

This enables us to calculate the ordinates of the normal curve and

thence we could evaluate the areas by successive applications of a

suitable quadrature formula.

We can, however, get the areas direct by using a table of the

probability integral, such as that due to Dr. W. F. Sheppard (see

pp. 284, 285). In that case the corresponding abscissae have first

to be expressed in terms of the standard deviation as unit, e.g.

a;4Q.5=40-5-31-92996=8-o7004,

and CT=5V'(5-34558)= 11-56025,

where the factor 5 is introduced because 5 marks was the unit in

the calculation of /it, (a process equivalent in effect to that previously

adopted).

Thus a;4o.5/a =0-741336

=i, say.

The area of the normal curve up to the abscissa xja or ^

= 1 ydx
.'-co

J ~OD

'-"°V277

=n/^ zd
J -ca

=N . A(l+a),

1

where - represents the area of the curve z=—=e~^^'^ between
2 V277

and ^.
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Sheppard's Tables give the values of |(l+a) for different values

of ^, and \\ hen

^=0-74, i(l+a) =0-7703500

^=0-75, 1(1 +a) =0-7733726.

Therefore, by interpolation, when

^=0-741336, i(l+a)=0-7707538.

Thus the frequency of candidates with marks lying between and

40-5

=514(0-7707538) =396-17.

Similarly the frequency of candidates with marks lying between

and 45-5 =452-20.

gyOy - ~r " - -
...

? Li-f--i5 . . /Jr:-5i _ .. _ _ _
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20 30 40

Marks obtained

Fio. (35).

50 60 70

Hence the normal frequency for the group with 43 as mean

number of marks =56-0, and the same method gives the area for

any other group.

The histogram of the observations and the curve plotted from the

ordinates are shoA\Ti together in fig. (35).

In Table (42) are set out the calculated normal frequency (col. (4))

for each group alongside the corresponding observed frequency

(col. (2)), and the differences between the two are shoMH in col. (5).

We want to know whether the fit is a good one.
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Table (42) Comparison of Observed and Normal

Frequencies in Examination Example.

(1) (2) (3) (4) (5) (6) (7)

Meau No. Normal Frequeiic}-. Ratio of No.
of

Marks.

Observed
Deviation.

Sij. of
in Col. (6) to

No. in Col. (4).
Frequency.

Ordinates. Areas.
Deviation.

3 5 3-9 5-7 + 0-7 0-49 0-09

8 9 10-4 10-7 + 1-7 2-89 0-27

13 28 23-2 23-5 -4-5 20-25 0-86

18 49 42-9 43-1 -5-9 34-81 0-81

23 58 65-8 65-6 + 7-6 57-76 0-88

28 82 83-7 83-1 + 11 1-21 001
33 87 88-3 87-6 + 0-6 0-36 0-00

38 79 77-3 76-8 — 2-2 4-84 006
43 50 561 56-0 + 6-0 3600 0-64

48 37 33-7 34-0 -3-0 900 0-26

53 21 16-8 17-1 -3-9 15-21 0-80

58 6 7-0 7-2 + 1-2 1-44 0-20

63 3 2-4 3-5 + 0-5 0-25 0-07

•• 514 511-5 513-9 •• 184-51 X^=504

Now with this object we might square each difference as in

col. (6), sum the squares, and find the mean square deviation by

dividing by the total frequency ; this, after extracting the square

root, would give what might be called the root-mean-square error,

regarding the theoretical values as the true ones. In the above

example it

=V(184-51/514)=0-599.

But this form of result, while it may be useful in some cases,

e,.g. in comparing two distributions of the same kind to some

theoretical series, is open to objection ; for one thing it treats all

the differences as if they Avere of equal importance in absolute

magnitude, but a difference of 2, say, in a normal frequency of 10

is clearly more serious than a like difference in a frequency of 60.

The objection, however, goes deeper than that ; even when the

root-mean-square deviation is found we are at a loss to estimate

its precise relationship to the quality of fit, as there seems to be no

definite connection between one distribution and another of a

different kind : there is no standard case, so to speak, to which we
can always appeal, where the fit is agreed to be good and supplying

therefore a suitable root-mean-square deviation for comparison.
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This leads us to the question : What constitutes goodness of

fit ? Suppose by some means we have selected a theoretical or

empirical formula to describe a certain frequency distribution in a

given population ; if the frequency values observed do not diflfer

from the theoretical frequencies by more than the deviations we
might expect owing to random sampling, then clearly the fit may be

regarded as a good one. And we have a measure of the fit if we
can find the proportion of random samples, of the same size as the

given distribution, showdng greater deviations from the distribu-

tion given by theory than those which are actually observed.

Now Professor Karl Pearson has shown how this proportion can

be calculated \Pliil. Mag., vol. 1., pp. 157-175 (1900)] ; he finds the

probability that a random sample should give a frequency distribu-

tion differing from that Avhich theory proposes by as much as or by

more than the distribution actually observed. This probability, P,

is a function of ^, where

y and y' representing the theoretical and observed frequencies for

any particular group and the summation is to include all groups.

It will be noted that this expression gives each difference {y—y')

its appropriate importance by relating it to the frequency y of its

own group.

A table in Biometrika (vol. i., pp. 155 et seq.) gives the values of P
corresponding to different values of y^ (including all integral values

from 1 to 30) and to values of n' , the total number of frequency

groups, from 3 to 30. (see also p. 285). The mathematics in-

volved in finding P is difficult, and the reader who wishes to enter

into it must consult the original memoir, but the utility of the

function has been proved by experience and it is readily applied

in a particular case.^^<,^£:i-^*'^''^S

In the above example p^^ is found from col. (7) : it equals 5-04,

and from the table of values of P, when n' =13, we have

P=0-957979 when ^^=5,

and P=0-916082 when x'=^-

Therefore, by proportional interpolation, when ^-=5-04,

P=0-956303. Thus, supposing our data to follow the normal curve,

in 956 random samples out of 1000 we should expect to get a

worse-fitting distribution than that given by the sample actually

observed. We may therefore conclude without hesitation that

the normal curve provides an excellent fit in this particular instance.
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We pass on now to fresh distributions to illustrate some of the

other types of frequency curve.

Example (2) deals with the percentage of trade union members

unemployed at the end of each month for the years 1898 to 1912

[data from the Sixteenth Abstract of Labour Statistics of the United

Kingdom, Cd. 7131]. Table (43) shows the distribution of the

180 records according to the percentage unemployed.

The deviations are measured from the centre of the group (3-9—5-2)

as origin, and the class interval (1-3 per cent.) is taken as unit of

deviation as usual.

The first four moments are :

—

-29/180(=a-), 425/180, 397/180, 3053/180 ;

i.e. -OlGllUl, 2-3611111, 2-2055556, 16-9611111.

Table (43). Distribution of Unemployed Percentages

OF Trade Union Members

Percentage Devia- Fre- First Second Third Fourth

Unemployed. tion. quency. Moment. Moment. Moment. Moment.

0— -3
1-3— _2 33 -66 132 -264 528

2-6— -1 57 -57 57 - 57 57

3-9— , , 41 ,

,

.

.

5-2— + 1 24 + 24 24 + 24 24

6-5— + 2 10 + 20 40 + 80 160

7-8— + 3 11 + 33 99 + 297 891

9-1— + 4 3 + 12 48 + 192 768

10-4— + 5 1 + 5 25 + 125 625

•• •• 180 -29 425 + 397 3053

Referred to the mean,

4-55 -fl-3.€- =4-3405556,

the second, third, and fourth moments are (see Appendix, Note 5),

,;2=2-3611111-.f2=2-3351543,

r3=2-2055556-3:ri/2-:c3=3-338395,

r4=16-9611111-4i;-;'3-6:cV.2-.f*=18-74817.

Owing to the very doubtful contact at the beginning of the curve

Sheppard's adjustments were not made in this case, but the rough

moments as calculated above were used.
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Thus jSi =7.2jj,3^ ^0-875242

iS2=/V'^'2=3-43817

and /.=iSi(|8.3+3)V4(4^o-3^i)(2^2-3^,-6)= -0-466.

Since k is negative the fitting curve should be of Type /.,the equation

of which is

y=yo 1+-

where mja-^=7n2la.2, and (ai-l-ao)=6, say.

It is therefore necessary before going further to determine y^, a^,

tto, b, m^ and m^ in terms of v^, v^, v^, or jS^ and jSa, the constants of

the distribution.

The value of y^ is found to be most conveniently expressed as a

Gamma function which is defined, with the usual notation, thus :

—

r{n)= j x'^-'^e-Hx,

whence it follows that T{k-^\)=kT{k). [See Appendix, Note 9,

also p. 285.]

Also, if

B(m, n)= \ .r™-! {l— xy-'^dx

it may be easily shown that

B(m, 7i)=r{m)rin)/r{m+n). [See Appendix, Note 9.]

The general method of procedure in determining the constants

for all the different types is :

—

1. Express the fact that the area of the curve is a measure of

the total frequency of the distribution—this enables us to

find ?/o.

2. Find the nth moment of the curve with regard to some fixed

origin—giving ?t particular values, 1, 2, 3, 4, this leads to

the determination of jXo, /Xg, jx^, jS^, jSg in terms of the con-

stants of the curve, and thence to formulae for calculating

the constants.

Once found, the same formulae may be used, of course, in all

cases of the same type : we have only to replace letters by the

numbers for which they stand.

Applying this method to the Tyj)e I. curve, we have

[+ "2

N= ydx
J -a-ii-ai

I-+ 02

a.^tto

^"
' {a.i-xY'Ha^-xY'^dx
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Put {a^-\-z)= {ai-\-a.^)z, so that {a2—x)— {ai-\ a2){l—z) and

-J-= (aj+a^'>)=6 ; therefore
dz

a^"'>a.^"'-^ Jo

(2)

.l"'^W2./'2

BCm,+ l,W2+l).
m{ 'm.2

Hence yo= . --^—~—— •

b (m,4-m2r+"'^ r(m,+l)r(m2+l)

Again, %'„=/ ?/(ai+a:)V^
• -"i

is the nth moment of the distribution referred to (— a^, 0), the

point where the curve starts from the axis on the left-hand side,

as origin.

Therefore, as above,

=6"Nf 2"'i + "(l-2)'"2C?2// 2"'i(l-2)™2c?2, by (2).
.'o / .'o

Hence,

^'"=6"r(Wi+w+l)r(mi+m2+2)/r(?Wi+l)rK+?W2+w+2)

=6"(mi+n)(mi+w— 1) . . , (mi4-l)/(^^i+^2+^+l)(^i+*^2+^)

. . . (mi+m2+2),

by repeated application of the relation r{k-\-l)=kr{k).

Putting w=l, 2, 3, 4 in succession, we have

^'j=6(mi+l)/(mi+m2+2),

/Lt'2=6^(mi+2)K+l)/(mi+m2+3)K+m2+2),

^'3-63(mi+3)K+2)(mi+l)/(mi+m2+4)(mi+m2+3)K+m2+2),

/^=6*(mi+4)(mi+3)(mi+2)(mi+l)/K+m2+5)(mi+m2+4)

(mi+?W2+3)(mi+rrt2+2).

These relations are rendered more concise if we ^^Tite

7ni-]-l—m\, 7712+1 =w'2, 7Wi+W2+2=r;

thus iJL.\=b'm\/r

fji\^b-m\{m\+l)lr{r-^l)

fi\=b^m\{m\+l){m\-\-2)lr{r+l){r+2)

^'^=6W^(w'^+l)(m'i+2)(w'i+3)Mr+l)(/-+2)(r+3).
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To get the corresponding moments referred to the mean as

origin we have the relations :

—

which, after some straightforward reduction, give

H2=b-m\m' Jr-{r+l)

fjL^=2b^m' I'm' ^i^n' 2—m' i)/r^{r-^l){r-ir2)

^^=3/;Wim'2[m\w'2(r-6)-f2r2]/r*(r+l)(r+2)(r+3).

Thus i3,=^^//x32^^*'^"^^^"^^^'^-^'^)'
/b^m'\m'\

=4(m'2-m'i)2(r+l)/m'iw'2(r+2)-

=4:{r^-47n\m' .2)ir+l)/m\m' r,{r+2)\

Therefore, _Il_ =M±?1V4 . . . (3)
m\m'2 4(r+l)

^ . ^
, ,

Sb*m\m'Jm\m' Jr-Q)-\-2r-] /b^'\m'K
Agam, iSo =fj-i iJi-o =- ^^

—

-—^^

—

— / —

3[m\m\{r-6)-\-2f-] (r+l)

m\m\ {r+2)(r+3)

Therefore. J!% =.-r-,6+^^'^^^ ... (4)
w'im'2 3(r+l)

Combining ,3) and ,4). '^^+S=0-r+^^^^^,
4(r+l) 3(r+l)

whence r=608.-i3,-l)/(3^,-2j3,+6) . . (5)

Again, since /x2=6-m'im'2/r-(r+l),

therefore 62^/^2(^+1) • [i3i(r+2)2+16(r+l)]/4(r+l), by (3),

i.e. b^^V/I^A [iS,(r+2r+16(r+l)] .• . (6)

And m',w'2=4/-2(r+l)/[^i(r+2)-+ 16(r+l)],

while m\-]-m'2=r ; hence w'^ and m'2 are roots oi

4r2(r+l)
WI-—rm+ - =0,

^,{r+2)'+ie(r+l)

r lY 167--(r+l)
the solution of which quadratic is -± ^ / --

j8,(r+2)^+16(r+.}
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therefore, m^ and m^* are respectively er[ual to

_2+ r(r+2)Vj3,

and ttj and a.^ follow from

a, a, b

217

^ 1 .

m. m^ nil+ nig

(7)

(8)

Applying these formulae to the ' unemployed ' example, ^we find

r=5-36048.

6=9-33236.

=0-169185. m2=3-191295.

a2=8-86252.a^ =0-469842.

Also ?/o=58-1282, and the equation of the curve is therefore

y= 58-l 1
0-470

X

8-86

The position of the origin, M'hich is at the mode, is given by

{mean-^node)=/z'i— ttj

_bm\ brrii

_^/m'i_m\-l \

V r r-2 /

=6 m m
r(r-2)

(9)

thus,
r+2

mode =4-3405556- 1 . ^
,

i^2 '—2
in this particular case,

=2-3052009.

[* When Mj is positive m.2 goes with the positive root of the quadratic, and
vice versa.]
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This enables us to Avrite do\\ai any x, and thence y by substituting

for X in the equation of the curve, which, by taking logs, may be

written

log y=\og Vfi+m^ log l+_ j+mg log
(

1-

e.g. for the x of the group (2-6— 3-9), bearing in mind that 1-3 is the

unit of measurement for x, we have

a:3.25=(3-25-2-3052009)/l-3=0-9447991/l-3.

Hence (
1+' ^^^

) =2-546835
;

^^M =0-9179953:
a, ,/

m, log ( l+'^:25 )_o-0686892 ; w^ log 1-'^:^ =-0-118587
;

\ «! ' \ «2 / .

so that log 1/= 1-7 14489,

and 2/3-25=^1 '^2.

Similarly the ordinates at the centre points of the other groups

may be calculated, but it must be remembered that the resulting

values are only a first approximation to the observed frequencies,

and a better series is obtained if, by using some good quadrature

formula, we calculate the areas for the successive groups between

the curve, the bounding ordinates, and the axis of x. Indeed in

the case of the group (1-3— 2-6) it is essential to do this, because

(1) the rise of the curve is so very abrupt as to render the deter-

mination of the single ordinate at the centre quite inadequate for

an accurate measure of the frequency in that group, and (2) a

portion of the group falls outside the range of the curve which only

starts at 1-6944063 (i.e. mode— l-3ai), and this has to be allowed

for in finding the frequency as represented by the area between the

curve and axis.

The base of the required area, range (1-6944063 to 2-6), was

therefore divided into eight equal joarts and the ordinates at the

points of division were determmed. The area was then found by

using Simpson's well-known formula :

—

Area=iA[(t/o+2/op)+2(?/2+?/4+ . . . +2/2p-o)+4(?/i+?/3+ . . . +y2;,-i)]>

where h denotes the length of one of the equal parts into which

the base is divided and 2^ is their number ; in our case ^=4 and

/i=:l the class interval being the unit, and the result is to be

reduced in the ratio

0-9055937 : 1-3
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in order to allow for the smaller range of this group ; we thus get

as the area for the group

-^^^^xJr(yo+y8) + 2(y2+v/4+y6)+ 4(2/i+Z/3+y5+y7)]=37-39.
1-3 24

The observed and calculated frequencies for the whole series are

compared in Table (44), the remaining areas in col. (4) being calcu-

lated by the simpler but somewhat less accurate form of Simpson's

formula, when only three ordinates are used, namely,
,+1

I

yr/.r=i(i/_i+ 4//(,+2/i).

Table (44). Comparison of Observed and Theoretical

Frequencies of Unemployed Percentages

(1) (2) (3) (4) (5) (6) (7)

Percentage
L' namployed.

Observed
Frequency.

Theoretical

Oidinates.

Frequency.

Deviation.

Areas.

Square of
Deviation.

Ratio of No.
ill Col. (fi) to

No.inC..l.(4).

1-3—
2-6—
3-9—
5-2—
6-5—
7-8-
9-1-
10-4-

33

57

41

24

10

11

3

1

55-3*

51-8

37-8

24-9

14-8

7-7

3-3

1-0

37-4

51-6

37-8

25-0

14-9

7-8

3-4

1-2

+4-4
-5-4
-3-2

+ 10
+ 4-9

-3-2
+0-4
+0-2

19-36

29-16

10-24

1-00

24-01

10-24

0-16

0-04

0-52

0-57

0-27

004
1-61

1-31

0-0.5

003

•• 180 •• 179-1 x2=4-40

To test the goodness of fit we have n''=8, ^-=4-40, whence, by

means of the P table, P=0-731852. Thus, roughly, Ave may say that

three out of every four random samples of 180 records would give a

worse fit with the proposed curve than is given by the actual distribu-

tion observed, so that the fit may be regarded as quite a reasonably

good one. This conclusion is also supported by an examination of

the curve which has been drawn, fig. (36), with the histogram of

the given statistics.

Example (3).—The data for this example concerning infectious

diseases will be found in Table (16), p. 62 (or, see p. 224) ; the

reader should work out the moments for himself and verify the

folloM'ing results :

—

[* The ordinate in this case cannot be accepted as an approximation to the
frequency given by the curve. ]
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The first four moments referred to 7 as origin are

0-282158, 4-86307, 17-4855, 129-394.

Referred to the mean, 7-564316, the three latter become

1/2=4-78346, 1/3= 13-4140, j/4=lll-964.

// we do not assume high contact at the terminals, and certainly at

the lower end it is doubtful, we deduce from the above values of

the moments that

^1= 1-64396, ^2=4-89321, /c= -l-53.

Thus the fitting curve is of Tyjpe I. and its constants, when calcu-

lated, are

y=ll-7819. mi=0-31171. ^2=9-47020.

aj =0-79216. ^2=24-0671. 2/o=60-363.
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Fig. (36).

The equation of the curve is therefore, retaining three significant

figures throughout

y=60-4 1+-^ 1-^
•

^ 0-792/ \ 24-1,/

The curve starts at 2-02904 (so that the first group of observations

lies wholly outside its range) and ends at 51-7475. It is drawn,

together with the corresponding Mstogram, in fig. (37).

Supposing, just for the sake of comparison, we assume high

contact at the terminals and attempt to fit the given distribution

with a Type III. curve, to which Type I. is closely related.

We then have, after making Sheppard's adjustments,

/X2=4-70013, /X3=13-4140, /X4=109-601,

whence ^i=l-73295, ^82=4-96129, /c= -l-47.

It will be noted that the theoretically correct type to take here

again is Type I., but this was discarded because, when attempted,
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it led to a curve starting at a point corresponding to a disease rate

of 3-385, so that the central ordinates of each of the first two

observed groups lay outside the curve altogether.

Type III. curve is of the form

y

70
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^50

a 40

to 20

tM
10

"
"

-
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Frn. (37).

25 30

To express the constants in terms of the moments, noting that the

curve starts from x=— a on one side and goes ofif to infinity on the

other, we have
-co

N--/ ydx
J - a

_Jo
I

e-yx^a-]-xYdx (where ya=p)
a J-a

^y^-i e-y^ya+yxfdx

=J\ ev« /
e

-

^^"+y'\ya-\-yxYdx
P J-a

=^^
I

e'^z^'dz (where ya-i-yx=z)
yp^Jo

=''^€r(;>+l).

Therefore, y„=Np''+VaeT(p-|-l) (10).
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Again, the nth moment of the distribution referred to (—a, 0)

as origin is

Therefore, by (10),

-1 /n

Hence,

=r(2?+w+i)/y"r(p+i).

li\=T{p+2)lyT{v+l)Mv+\)ly

/x'2=r(p+3)/y'^r(i>+l)={i>+2)(i>+l)//

)a'3=r(p+4)/y3r(i)+l)= (i>+3)(;)+2)(^+l)//.

Transferring to the mean as origin we have for the moments, since

/i2=/2-*^= (P+l)/y'"

/^3=/^'3— 3^/i2—^^=2(jj+l)/y3.

Hence, combining these last two equations,

y=2fijfi,, p^lW/^'a)-! • • . (11)

In our particular case these equations give

y=0-700780, 2^=1-30820, a=l-86678,

and, therefore, by (10),

yo=55-3323.

Hence the curve is

y=55-3e-°"Wl+— ) .

V 1-87/

The equation of the curve, on taking logs, gives

log 2/=log y^—y log lo^ • x+p log ( 1+^

=l-742979-0-304345x+ 1-30820 log (l+ x/1-86678).



=-(i^+l)y-i''ly

= '

mode ==7-564316- 2-853960

A
•«

—

Mode Mean
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Before Ave can go on to calculate the ordinates of the curve we

need to know where the origin lies, and since it coincides with the

mode it may be found from

mean— mode =/x' ^—

a

. (12)

Thus, mode=7-564316-2-853960=4-71036.

Suppose now we wish to calculate the ordinate corresponding to

the X of the centre point of group (6—8), we have

a;7=i(7-4-71036)

=1-14482,

bearing in mind that the unit is a rate of 2 per 1000.

Hence, substituting this value in the equation for log y,

log 7/7= 1-666278

?/7 =46-374,

and similarly any other y may be found.

The curve starts at

mode-a=4-71036-2(l-86678)=0-97680,

so that the range of the first group as determined from the curve is

(0-9768-2), and not (0—2) as in the observations.

The ordinates and afterwards the areas, calculated by a method

somewhat similar to that indicated in Example (2), were determined

for each separate group of observations, and the results for both

Tjrpe I. and Tjrpe III. curves are compared in Table (45).

Type III. curve is drawn on the same diagram, fig. (37), as Type I.

curve and the observation histogram, and the result lends emphasis

to an important jDoint, namely, the necessity for replacing ordinates

by areas to obtain the frequency proper to any group.

In order to get a measure of the goodness of fit in each case,

the function P was calculated, but in the Type I. comparison the

first group had to be omitted to avoid the infinite term which would

have resulted in v^^^, owing to this group falling right outside the

curve, that is to say, the test had to be confined to toA\Tis in which
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the observed ease rate was not less than 2. The values found for

P were :

—

Type I.—P=0-34307,

Type III.—P=0-46298,

so that in every 100 samples containing 241 observations each, we
should get, roughly, 34 deviating from the Type I. curve and 46

deviating from the Type III. curve, at least as widely as the given

distribution. In neither case can the fit be regarded as a very

good one, but the failure is only marked in one or two groups, such

as that of maximum frequency, where there may be other than

random causes to account for it ; e.g. where isolation is inefficient

the disease is likely to spread, one case infects another : in other

words, the events are not independent.

Table (45). Comparison of Observed Distribution of In-

fectious Disease Rates, notified in 241 large Towns of

England and Wales, with Theoretical Distribution.

(1) (2) (3) (*) (6) (6)

Observed
Frequenc}-.

Theoretical Frequency.

Case Rate. (fi-f)Vfi. {fs -/)//,.

Tvpe I. Type III.

0—
(/)

5
(/x) if.)

6-6 0-39

2 39 52-6 43-7 3-52 0-51

4— 69 55-4 54-3 3-34 3-98

6— 41 43-2 46-2 Oil 0-59

8— 29 31-2 33-6 015 0-63

10— 22 21-5 22-4 0-01 001
12— 16 14-2 141 0-23 0-26

14— 7 91 8-6 0-48 0-30

16— 5 5-6 51 006 000
18— 3 3-3 2-9 003 000
20— 4 1-9 1-7 2-32 3-11

22— 10 0-9 1-00 0-90

24— 0-5 0-5 0-50 0-50

26— 1 0-3 0-3 1-63 1-63

•• 241 239-8 240-9 X\= 13-38 X%= 12-81

Example (4) refers to the wages of certain women tailors previ-

ously recorded in Table (11), p. 41. The data as given in the

original suffered a disadvantage common to such statistics : at
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either end the grouping differed from that in the centre, two or three

classes being lumped together owing to the smallness of frequency

in each. The figures ran thus :—Under 5s., 19 ; 5s. and under 6s.,

180 ; 6s. and under 7s., 384 ; ... ; 23s. and under 24s., 64

;

24s. and under 25s., 54 ; 25s. and under 30s., 122 ; 30s. and over,

36. They were recast in the form sho\\Ti in Table (46), suggested

by an examination of the histogram, in order to make the fitting

simpler.

The first four moments calculated from this adapted table and

referred to 12s. as origin are :

—

/i=0-556718, i;'2=5056373, ^^'3=16•70163, i.'4=123-7691.

When referred to the mean, 13-113436, the last three become

1/2=4-746438, i/3=8-60179, i/4=95-6914

;

or, after making Sheppard's adjustments,

/^2=4-663105, /Lt3=8-60179, /m4=93-3474;

therefore, ^1=0-729713, /S2=4-29291, «=l-63.

The curve is thus of Type VI.,

y=yo(x-a)iVx'".

To calculate the constants, the nth moment about the origin is

given by

=2/o j{x—af'\v''-'''dx

•0 ,^1-2)"^ a-31 / 1\^ / ^ a
-— •
—-(i{ — ^ )dzl where x=-

d'li-'.-z-n-l

Thus, putting n=0,

N=-^B(<7i-^.,-L (?3+l) . . . (13)

and ^'^=a-riq,-q,-l-n)r{q,)!r{q,-n)r{qi-q,-l);

therefore, fi\=ar{qi-q^-2)r{q,)/r{qi-l)r{q^-q.,-l}

=a(q,-l)/{q,-q,-2).

Also ^' Jix\_^=ar{qi-qi-l-n)r{qi-n+l)iriqi-n)Tiqr-qi-n)
=a{q^-n)/{qi-q2-n-l).
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^Blice fM',^aHq,-\){q,-2)l{q,-q,-^2){q,~q,-3)

IJi',=a^{q,-mh^2)iq,-3)l{q,-q,-^2){q,-q,~3)iq,-q,^A)

(?i-?2-4)(?i-<?2-5).

But these relations are precisely the same as those of Type I. with a

in place of b, —q^ in place of m^, and g, i^i place of mg, so that

(l+Qj)' (1— Qi)* a-re the roots of

q2_j.q+4r2(j.^l)/^^^(j.+2)*+16(r+l)]-0 . . (14)

where T=6{^,-^,-l)l{e+Z^,-2fi,) .... (15)

Also yo=Na'i-''-^-T(qJ/r(Q,-q2-l)r(q,+l), by (13) . (16)

and a is given by

/x,= a^(l-q,)(l+q2)/r^(r+l), .... (17)

fjL^ being the second moment of the given distribution referred to

its mean as origin.

The distance of the mean from the origin is

yLi\=a(qi-l)/(qi-q2-2), .

and this fixes the origin, for the mean is known directly from the

statistics.

dy
To get the mode, use the equation of the curve, putting — =0

dx

and we have

origin=mode— ag'i /(g'l— g'j) •

Combining this with

origin=mean— a(g'i— l)/((/i— 92— 2)

we have

mean-mode=a(qi+qj)/(qi-q2)(qi-q2-2) . . (18)

Applying these formulae to the case of the women tailors,

r=-38-7698, 9i=51-5269, q2= 10-loll, a=2M1018,

and the equation of the curve is

y=yo(x-21-l)"Vx"^

where log
?/o
=68 •8254

.

Also the origin is at —41-9104, the mode at 11-4498, and the maxi-

mum theoretical frequency is 2299.

[* Wlien fjL.^ is positive (l+q^) goes with the positive root of the quadratic, and
vice versa.]
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Table (46). Distribution of Wages of certain

Women Tailors, Actual and Theoretical.

Wages.

Frequency.

Wages.

Frequency.

Actual. Theoretical. Actual. Theoretical.

Is.—
3s.—
5s.—
7s.

—

9s.—
lis.—
13s.—
15s.—
17s.—

5

14

564

1243

2045

2339
1815

1432

854

1

52

452
1332

2096
2255
1898

1353

859

19s.—
21s.—
23s.—
25s.—
27s.—
29s.—
31s.—
33s.—

523

262

118

64

43

27

15

9

503
278

147

75

38

19

9

5

•• •• •• 11,372 11,372

The theoretical and actual frequencies are compared in Table (46)

and the curve is drawn with the histogram in fig. (38).

2500

2000

S
O1500

3 1000

500

^Et!:
cy- 5/- ,0/- 15/- 20/-

Rate of Wages
FV». (38).

25/- 30/- 35J,

Example (5) discusses the distribution of frequencies of specimens

of Anemone nemorosa with different numbers of sepals, recorded by

G. U. Yule [Biometrika, vol. i., p. 307).
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The first four moments referred to 6 as origin are

i,'^=0-508, i/'2=l-012, z^'3=2-476, v\=9l24:.

Referred to the mean, 6-508, the last three become

1/2=0-7539360, 1.3=1-195905, i/4=5-459941.

The contact, at one extremity certainly, being doubtful, Sheppard's

adjustments were not made in this case. Hence,

jS^=3-337259, /32=9-605476, «=l-46.

Since k does not differ greatly from unity an attempt was made to

fit the observations with a Type V. curve, namely^

y=yoX-''e-^^

The nth moment about the origin is given by

. ^fx\= jyx^dx
Jo

(since, p and y being positive, y vanishes at a;=0 and at cr=oo)

=2/oy
"
~ ^'

"^M z^'~'^~~e~~dz (where z—yjx)
Jo

=7j,y--^+'r{p-n-l).

Thus ^=yoy-P+^r(p-l).

And fi' Jfi' n-i=y/{p-n-l).

Hence ft'i=y/(2)— 2)

fi'o_=yV{p-2){p-S)

/x'3=y7(P-2)(i?-3)(2)-4).

Referred to the mean as origin, the last two moments become

fM,=4yyip-2np-Z)ip-4),
whence

P,=fJiMfx\=lQip-S)/{p-4r^=[lQ{p-^)+lQ]l{p-^r-;

this gives a quadratic for (^—4), one solution of which is

p-4=[8+4V(4+A)]/iSi. •
• • (19)

the positive root being taken in order to get a real y.

Thus y*=(P-2)V[(P-3W • • . (20)

and y„=Ny''-Vr(p-l) .... (21)

Since fji\=y/{p—2), the position of the origin is given by

Origin= Mean -y/(p- 2) . . . (22)

ALso the distance of the mode from the origin is y/p, so that all

the constants of the curve are readily determined.

[* The sign of y is taken to be the same as that of M3.]
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In our particular case, we get

P-9-G43840, y =17-10758,

and the curve is
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where log i/o=9-38179. The origin is at 4-27 and the mode at 6-04.

The greatest frequency is 620 approximately, and the frequency dis-

tribution, calculating areas for the several groups as if they ranged

between (4-5— 5-5), (o-5— 6-5), etc., is shoMTi alongside the observed
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distribution in Table (47). The curve is plotted in fig. (39) from the

ordinates which were calculated at the centre and extremities of

each group so as to enable Simpson's simple quadrature formula

to be used to get the areas.

Table (47). Distribution of Sepals of Anemone
Nemorosa, observed and calculated.

[Examples have been given above of five out of the seven different types

of frequency curve that have been enumerated. For further examples of

.all the types and a complete account of the method reference should be
made to Professor Pearson^ s memoirs, especially the following :

—

Roy. Soc. Phil. Tram., vol. 186A/pp. 343-414 (1895), On Skew Variation

in Homogeneous Material ; and a Supplementary Memoir in vol. 197a, pp. 443-

459 (1901).

Biometrika, vol. i., pp. 265 el seq., On the Systematic Fitting of Curves to

Observations and Measurements, continued in vol. ii., pp. 1-23. Also vol. iv.,

pp. 169-212, which discusses various historical hypotheses made to generaHze
the Gaussian Law, the basis of the symmetrical normal curve.

A large number of highly interesting practical illustrations of Pearsonian
curve fitting occur throughout the pages of Biometrika, while W. P. Elderton's

Frequeiicy Curves and Correlation contains an admirably concise treatment of

the theory, with applications to meet more particularly the actuarial point

of view.

It should be stated that rival curves and methods have been proposed as

suitable for fitting certain t%-pes of frequency distribution, some of which have
scarcely received the attention and the trial they deserve. Among the most
interesting are those developed by Professor Edgeworth ; for some account of

his voluminous work upon the subject the reader may refer to several memoirs
in the Journal of the Royal Statistical Society, beginning December 1898
(the Method of Translation), among which the following are important as

giving more recent results of his researches :—
Vol. Ixix. (1906), The Generalized Law of Error or Law of Great Numbers.
Vol. Ixxvii. (1914), On the Use of Analytical Geometry to Represent Certain

Kinds of Statistics.

Vol. ixxix. (1916), On the Mathematical Representations of Statistical Data;
continued in vol. Ixxx. (1917).

Two memoirs may be cited as of particular interest—those of May 1917
and March 1918—because they reply to criticism and draw a comparison from
their author's point of view between his curves and those of Professor Pearson.]



CHAPTER XVIII

THE NORMAL CURVE OF ERROR

Let us return for a moment to the general statement on p. 143,

that ' \^henevcr we have n similar but indej)cndent events happen-

ing in which the probability of success for each is j^, the different

resulting possibilities as to success are given by the successive

terms in («+/)", namely,

1 . ^

and their correspondent probabilities by the successive terms in

ip-\-q)", namely,

J. • ^

When we come to try and ajiply this theory directly to cases

other than those of random sampling in artificial experiments ^\ith

coins, dice, etc., we are faced at once with difficulties because of

the limiting character of the assumption on which the theory rests,

namely, that all the events are to be similar and independent. The

similarity demanded is of the same radical type as that existing

when we throw the same die or spin the same coin tAvice running,

and the test for it is that p, the chance of success, is to be the same

for every individual event. The independence is to be such that

no single event and no combination of events is to have any influence

upon any of the rest.

Now for most classes of events it is impossible to assign any

a priori value to p at all, still less can we be sure that p does not

change from one event to the next. For example, the chance of

death for soldiers in Avar-time varies from regiment to regiment

according to where they happen to be located ; for the same regi-

ment it varies from battalion to battalion according to whether

they are in tke trenches or behind the lines ; and from individual

to individual according to innumerable little accidents of time, place.
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and condition. Also, where the shells burst thickest, p increases

for any soldier there, but it increases also for his neighbour. Thus

the events in such a case are not similar, neither are they inde-

pendent.

Moreover, as it stands, the theory cannot be applied to any

distribution in which the character observed is capable of continu-

ous variation. Tliis difficulty, however, has been overcome, as we
have seen, by replacing the histogram representative of the binomial

by a continuous curve which at the same time serves to describe

the discontinuous series to a high degree of accuracy.

To illustrate how close this

description can be, even when 7i

is comparatively small, we will

fit with its appropriate normal

curve the symmetrical binomial

polygon formed by joining up

the summits of the ordinates

representing successive terms of

the series

erected at unit distance apart.

The total area bounded by the polygon, the extreme ordinates,

and the axis of x is practically

=sum of the given ordinates

=2i»(Hir
=1024.

. .)x(l)

The equation of the normal curve is

where (T^=npq

and

llXiXf: •75,

Yo=N/\/27r • a=1024/V(5-57r).

Hence, taking logs, we have

X'
log ?/=log Yo-—, logioe

Zct"

=2-3915437-a:2(0-0789626).

It is easy from this equation to calculate the normal curve ordinates

corresponding to x=0, 1, 2, 3, 4, 5, and the results, compared with

the polygon ordinates, are as follows :—

-
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X Ordinate of Polygon. Normal Curve Ordinate.

252 246-3

±1 210 205-4

±2 120 119-0

±3 45 48-0

±4 10 13-4

±5 1 2-6

Now although the circumstances in which the series

{\Y^n{\Y-\\)-
.M^-l)a,n-

1.2
{\Y-\W^

may be taken to represent the frequency distribution resulting

from a particular kind of experiment were so stringently defined,

there is no reason why the normal curve itself to which the theory

led should be subjected to precisely the same limitations. After

all, the real and only justification for choosing one curve rather

than another to fit any given observations is that it does succeed

in fitting them better. But when the further question is asked

why the normal curve should succeed in describing some results

so well, we must not be tempted by analogy to rush to the con-

clusion that the causes at work are necessarily independent, and

equal, and so on. In short, the theoretical justification and the

empirical use of the normal curve are two quite different matters.

Experience shoAvs that the normal curve suffices to fit certain

types of distribution, besides those which arise in tossing coins and

in similar experiments, with remarkable accuracy ; among these

may be noted :

—

1. Certain biological statistics ; for instance, the proportions of

male to female births taken over a series of years for a large com-

munity such as the population of a countr}^ ; also the propor-

tions of different types of plants and animals resulting from cross-

fertilization.

2. Certain anthropometrical, jJdrticularli/ craniometrical and allied

statistics, such as the height, weight, lengths of various bones, skull

measurements, etc., of a large group of persons, and the agreement

is the closer if the group be reasonably homogeneous, i.e. composed

of individuals of the same nationalitj' and sex between the same

narrow age limits, etc. ; also measurements of a similar character

in animals and plants.

3. Errors of observation in experimental work ; for example,
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several measurements of the same quantity—length, weight, speed,

temperature, or whatever it be—will contain errors of this kind

which are equally liable to be above or below the true value.

4. The marks of shots upon a given target, assuming that the

shots are equally liable to err in any given direction. This is an

interesting case of the normal law in two dimensions, for the north

and south line and the east and west line through the centre of

the target may both be regarded as axes of normal curves of error.*

5. Certain sociological statistics of a comparatively stationary char-

acter ; for example, rates of birth, marriage, or death at neighbour-

ing times or like places ; also the wages (and possibly the output

if it could be satisfactorily measured) of large numbers of workers

engaged in the same occupation under the same general conditions.

6. Any statistics or quantities that are individually compounded of

a large number of elements, mostly independent of one another, which

themselves vary between limits not very widely divergent, and none

of which exert a preponderating influence upon their resultant

statistic. The latter may be simply the sum of its elements, or,

more generallj^ it may be any function of the elements which, to

the first degree of approximation, can be expressed in linear form.

Now it would be a difficult matter in most of these cases to satisfy

ourselves as to the fulfilment or non-fulfilment of conditions like

those on which the binomial distribution rests. It is not easy

indeed to visualize them perfectly, except in artificial experiments

where they are largely under control. If anything, the chances

seem almost hopelesslj^ against their fulfilment in ordinary life,

so closely must we hedge round our sample to keep out unequal

influences. For example, to use a frequently quoted illustration,

if p measures the chance of death for an individual, the death rate

varies, as we know, considerably from place to place according to

the age and sex constitution of the population ; it is influenced by

differences in class, and occupation, and manner of life ; it is

altered from time to time, violently by the ravages of war or disease,

more gradually by improvement in general sanitation, housing

conditions, etc. We should only expect to get the binomial distri-

bution (and consequently the normal law if it depended upon the

[* Sir John Herschel published in the Edinburgh Review (1S50) an a priori

proof of the normal law from a consideration of this problem. Taking <p(x^) as

the expression of the law for one dimension and ip{x'' + 1/"^) for two dimensions,

the independence of errors in perpendicular directions leads to the functional

equation '^(x- + y'^) = ^(x') x <^(jr^), the solution of which is of the form

^/-g-?) _ g - A2j-2^ It should be added that the assumptions underlying the proof
s'tt

are not entirelj' above criticism.]
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same postulates) exactly verified if we were dealing with the same

stationary population existing under the same stable conditions

over a long period of time ; moreover, since p is to be identical for

each individual event in the ideal case, it would be further necessary

that every family and every individual in our population should

also remain in the same stationary and stable state. This is mani-

festly impossible, especially after the industrial revolution which

the advent of machine power created.

These considerations suggest the interesting question whether the

various types of statistics we have enumerated, as being approxi-

mately subject to the normal law, could not, if we knew more

about them, really all be included under heading number (6), repre-

senting a further development from the binomial theory and an

enlargement of the field in which it holds good.

In an earlier chapter, when we were discussing the connection

between marriage rate and prices, we showed how it was possible

by a method of averaging to differentiate between long-time and

short-time effects. The more transient fluctuations, only super-

ficial in character, were removed and the real nature of any per-

manent change in the figures was revealed. In much the same

way, when we have a group of statistics which do not perhaps fit

a normal curve of error at all closely, it may be possible by random

averaging to get rid of some of the fluctuations which cause the

badness of fit and to obtain a new group of statistics which more

nearly obey the normal law. Averaging, that is to say, tends

to smooth away the rough outstanding abnormalities ; and we shall

presently show that if two variables, X^, Xg, which are independent,

obey the normal law, any linear function of the variables

(WiXi+w;2X2), obej's the same law. This may throw some light

on Class (6) where each statistic represents a compound, that is,

in a broad sense, a kind of an average of a large number of elements

which partially neutralize one another's influence, or rub the corners

off one another, so to speak, since no single element is, by hypothesis,

to exert an overwhelming influence upon the compound itself.

But although the normal curve does serve to describe a consider-

able number of frequency distributions within reasonable limits,

there are many more cases in which it fails : for example, the

greater part of those bearing on economic matters ; also statistics

relating to the incidence of disease and degree of fertility are, as

a rule, very markedly skew. Hence arose the necessity for an

extension from the symmetrical normal to some kind of skew

variation curves to fit such distributions.
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The normal curve, however, has an importance of its own to

which we must now draw special attention. It is the foundation

of the theory of errors and provides us with an invaluable method
of estimating the importance of one error in comparison with

another, or of determining the probability that an error shall lie

between stated limits. Upon it we depend for several most

important approximations which are in constant use.

The term ' error ' is used here in the sense that if we take the

mean ot a number of observations, the deviation of any one of

them from the mean may be termed its error. When such devia-

tions can be satisfactorily fitted, that is, within the limits of random
sampling, by means of a normal curve, they are said to be subject

to the normal law of error.

This law is expressed, as we

have seen, by the equation

where y . hx measures the fre-

quency with which an observed

organ or character deviates from

tlie mean by an amount lying between x and {x-\-hx) in a large

population, i.e. y . hx registers the frequency of an error of size x

to {x^hx), and N and a are constants dependent upon the particular

application of the law.

The probability curve or nortnal curve of error. As a guide to the

drawing of the above curve it may be worth while plotting

y=e-^.

This is readily done by writing the equation in the form

—x^=\og^y.

Giving now to y the values U, 0-1, 0-2, etc., we can find values of

logg y as shown in Table (48), and, by means of a square root table,

X is then determined.

Table (48). Corresponding Values of x and y to plot ?/=e~*\

y logey X

±00

y loge^

-0-5108

X

±0-71— 00 0-6

01 -2-3026 ±1-52 0-7 -0-3567 ±0-60
0-2 -1-6095 ±1-27 ' 0-8 -0-2232 ±0-47
0-3 -1-2040 ±110 0-9 -0-1054 ±0-32
0-4 -0-9163 ±0-96 1-0

0-5 -0-6932 ±0-83 •• ••
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This enables us to plot the graph as shown in fig. (40). Since

logg 1=0, and the logarithm of any number greater than 1 is

positive and thus cannot be equal to —X', it follows that y cannot be

greater than 1 . Moreover y cannot be less than 0, for the logarithm

of a negative quantity is meaningless, but, as y approaches 0,

X approaches OD.

Also the curve is symmetrical about OY because for any possible

value of y there are two values of x, equal and opposite.

Returning now to the curve

y-
N

- 6-^^/2-=',

V27T.a

it must be of the same general shape as y=e~^ because the two
only differ in their constants. It is clearly symmetrical, for

»>Y
1 1_-_.__ _ _J. lO - - .

4.22« +
__, = _TT_=.,__J

.__! tiC Q. 75 >»
:::::::--::-::::::-:::::::: 5?! ::::::::: T": :::-: "i: :: ::.. __. _ ^^ - .-± -5*..-

_ -'_ ... 41- . . 5,.

:::::::::: ::::::::_i't: ::::::::;::: :::±t:::::::::::::::::'i
:::::::::; :::;";!:^:i;::::::::::::::::$ 25;:::;::::::::;:::;: Ji.;:j:::::::::::;:± : :::::?. _ _ XX- - x
±: ..,,!f- _ _ .± . _ ± x
^s.-^-— ^ xii H||||||nWtl#4JX

•200 -1-75 -150 -1-25 -100 -0-75-0-50 -0-25 O 0-25 0-50 0-75 100 125 1-50 1-75 2 00

Fio. (40). The graph of y= e-='\

instance, about the axis of y, because, in this case also, to any value

of y there are two values of x equal and opposite. Moreover it

tails off to the right and left from OY, the axis of x being an

asymptote, for as x tends to ±00; V tends to zero as before.

When x^O, y=NlV27T.a,

giving the point B, fig. (41), where the curve cuts the axis of y,

Tliis is evidently the highest point on the curve, for

dy

dx

and this vanishes when .r=0.

d-y

Nx
,-a-2/2<r3

V2.\TT .a"

Again, ^^g-*2/2<rI 1+
'

dx' ^/l-na^ \ a-

which vanishes when x= ^(j, and at these two points, H. H', we
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therefore have ' points of inflexion ' where the bend of the curve

changes its direction.

The axis of y about which there is symmetry evidently locates

the mean error, in this case zero ; in fact the mean and mode
coincide, so that the mean or zero error is also the one which most

frequently occurs, and any two other errors which are equal in

magnitude but above and below the mean respectively occur with

equal frequency : i.e. the frequency of positive errors is balanced

by the equal frequency of negative errors on the other side of the

mean, making the median error likewise zero.

Again, the area I ydx measures the frequency of errors lying
J+ Xl

between x^ and 0:2 above the mean ; I ydx registers the frequency
J-x

Y

Fio. (41).

of errors between and .r, or of deviations up to this magnitude,

on either side of the mean ; and, in particular, for all errors

the total frequency= I ydx
J -CJO

= ^ f" e-''!''''dx

-\/2-Tr rrJ-'V27r . CT-'-co

N
{V27T . ff) (as on p. 206)

V27r-CT

This enables us, by means of the fundamental definition, at once

to write down the probability of errors between any stated limits

and explains the origin of the name, the probability curve, which
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is sometimes given to the equation. Thus we hav^e the probability

of an error between -{-x^ and -\-X2

frequency of errors between the given limits

frequency of all errors

Jxi

.+00

= ydx n ydi

-g-x'W^^jj
. . (1)

VStT . CT-'xi

Incidentally, the probability of an error between x and

N
Sx

-\/27r.(

e-x2>2
. (2)

Fio. (42).

Geometrically, the area represented by the shaded portion of

fig. (42) measures the frequency of errors between -j-Xj and -{-x^,

while the complete area between the curve and axis X'OX measures

the total frequency, so that the probability of an error between

-f Xi and -\-X2 is measured by the proportion which the area of the

shaded portion bears to the whole area.

dx
If in the above expression (1) we put x/a—^, so that — =ct,

di

it becomes

1 /-fa

(3)

which is known as the 'probability integral, ^^ and ^0 being the
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values of | which correspond to the values x^ and x^ of x. But

this integral measures the area of the shaded portion of the curve

1
y- hP

V27T
(4)

shown in fig. (43), which is really the normal curve over again, but

drawn on a different scale, namely, with the ordinates reduced in

the ratio N : a and with the standard deviation a taken as the

unitof measurement for a:, for I =1,2, 3 . . . when.r=CT, 2a, 3a, . . .

This has the effect of making the total area unity and the area

given by

a-,d| (3) bis

V27r4

now directly measures the probability of an error between afi and afg-

y Tables have been prepared

(see pp. 284, 285) which enable

us to write down the value of

this integral for different values

of fi and ^2 between certain

limits (see Appendix, Note 10).

Let us take an example to

show how the curve may be

used, and we choose one leading

to a binomial distribution, so

giving an expression for the

probability by first principles,

in order to compare the two methods.

Example.—Suppose we toss simultaneously 100 coins, and sup-

pose the chance of success, say ' heads,' is the same for each coin

and equal to 1/2. In that case, according to the binomial theory.

the probability of 100 heads ={l/2)^^^,

„ 99 heads and 1 tail =iooCi(l/2)99(l/2),

„ 98 heads and 2 tails =10002(1/2)98(1/2)2, andso on.

The most probable number of heads=np= (100)(l/2) =50. This

does not mean, as explained before, that if we perform the

experiment once we are sure on that one occasion to get exactly

50 heads and 50 tails, but that if we go on repeating the experiment

we shall in the long run get 50 heads and 50 tails turning up more

often than any other combination.

Let it be required to find the probability of getting at least 55
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heads, that is, we want the probabihty of gettmg 55 heads or

more, and this is given by

a sum not very readily calculated if we have to go at it in a straight-

forward manner.

Now let us turn to the curve of error method. The standard

deviation for the distribution is given by

Since the mean number of heads to be expected if the experiment

is repeated a considerable number of times =50, we want to find

the probability of an error equal to or greater than 5, i.e. an error

lying between a and 4-00> because ct=5.

But the probability of an error between a^^ and cr^g

V27T.'h

Hence the required probability

1 -^

\/277.'l

=0-15866, by the probability integral tables.

In other m ords, if we repeated the experiment 100 times, we might

expect 55 or more heads about 16 times.

We can now show that if Xj, Xg are two uncorrelated variables

obeying the normal law, then {w^-^-\-w.^<^) will obey the same law.

Suppose Xy, Xo are observed deviations from the mean values

Xj, X2 in one particular record, ctj, o-g being the respective S.D.'s.

Let X=?rjXj+w'2X2' ^^<i ^6^ •^' ^6 t^^ de\4ation in X corre-

sponding to deviations x'^, x^ in the given variables.

Thus X-|-a:=i<'i(Xi+.ri)-l-W2(X2+'^'2)

Therefore, x—w^x^^w^x.^,.

But the same error r may be obtained by giving x^, t, many different

values provided their weighted sum is unaltered. Let us first

keep x-j constant, so that the corresponding value of x^ required

Q
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to produce an error lying between x and {x-\-hx), where hx is small,

must be such that

X< 10yX^+ ^2^*2< -^+ S-^j

i.e. x—w^x^^<iWoX2<.x—WyX^-\-hx,

i.e. X2 lies between (.r— w^.rj)/^, and {x—w^x^-\-hx)jW2i and the

probability for this

=?f . __L_e-(--'">^^)^/2-^2'-'.^ by (2).

Now this is in a form which only involves hx, x, and x^, and we

get the total probability for an error \y\ng between x and {x-^hx)

by givmg all possible values to the error x^^.

But the j)robability for x^ itself to lie between x^ and {x^-\-hx^

_ 1 r^i+^-'-i
g-x-/2<r2j^^

Sxj

V27
-e-^'^/--S by (2),

f _
^ e-(a;-«-iJ-iy^/2g-v.'^2

'2 a2\/27r J

and the probability for this to concur with a suitable x^ to produce

an error in the weighted sum lying between x and (a:+Sx*), on the

assumption that X^ and Xg are independent, is therefore

hx

W,^TTa-^2

Hence the total probability for an error lying between x and (x+Sa;)

is obtained by integrating this result, that is, summing all possible

probabilities, between .Ti=— CD and Xi =+oo. This gives

"•*'
/ g \2(r-i 2o-22W-''2' •1<t\\k\ 1<j\w'^^^

lO'2.'-o3

hx
1W\X—^1-

rtJg • 27rcriCr2- - =0

where a^^W'ya'^^;Y'^'•p''^

^j, .4-00 _,/ crJi _ U'i^i ^\ = ^^2/ cr^iwiii 1_ \

1^2 • 27rCTjCr2.

So;

rfa*!

a2(ofli£Vi^)r .+CO

^2 • 27rcriCT^

g 1<jSw\<t-^

I — ry-i

\/2 . 0'iO'2W^2
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1 / CT.X-1 It'iCTj

where f=—-=\ — x
•V2\CT|0-2^2 0"2^20"

8^ ,-'-..^&^^ V2.c7,a3ii;3

^2 • 27rcriO-2

\/27r.CT

which proves that the error x obeys the normal laAv with

S.D.=V(wVi+wV\) .... (5)

The above principle is readily extended, for if

X^, Xj, . . . X„ being independent variables obeying the normal

law, then X also obeys the normal law and its

S.D.=V(wV\+wV2+ . . . +wVJ . . (6)

In discussing the results of random sampling we worked upon

the principle that, given a number of sample observations of any

statistical constant, a mean or a percentage or a coefficient of

regression or anything else, an error or deviation as large as cr,

the standard deviation, from the true value for the whole population

might quite likely occur, but that an error exceeding 3cr would be

unlikely, and we explained that, as a result of convention, the

probable error, equal to §ct roughly, was largely used in place of a

by many writers. We have now to examine the basis of this

principle, and the first point to notice is that it only strictly applies

to a normal distribution.

To find the probability of an error lying between —a atid -\-a in a

normal distribution.

1 /"+' . .-,

The required probability =—-=— I e~'^^'^'^'dx

V27r . a- -<r

1 r+i

=—7= I e~^'H^ (where x=a^)
V27r-'-i

=0-6827, by means of the tables.

This then is the probability that the error in a given sample shall

not exceed the S.D., a. The probability that the error shall exceed
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a iB accordingly (1—0-68) =0-32. It therefore appears that the

odds against an error exceeding this amount are 68 to 32, or about

2 to 1.

The probability of an error between —2a and -\-2a

1 /+ 2

V2J-2

=0-9545,

and the probabihty of an error outside these limits =0*0455.

Hence the odds against an error exceeding 2a are about 21 to L

The probability of an error between —da and +3a

1 r+3
-P/2,di

V27TJ-3

=0-9973.

Hence the odds against an error exceeding 3a are about 370 to 1.

1
1

Zj 1
1

'

B
"T --^

[

<' " 1

/' \
/ 'S

n' ^^ 1 V
__^ \ R

y s-

J kC:i \
/ S

/ -- s
/ II ^ V

'

Hj *"s
p» s F

CO N -3i
-- -- n-- M- -0'6-7'it"cr- J-

- _0-4W=- i^^- i^.—

O ^^^R N, <^ N2 <^ N3 X

Fig. (44).

That these results are reasonable can be seen by an examination

of the curve of error

N , ,

V 277 . a

the graph of which is drawn, fig. (44), in the particular case when

cr=5, N=.100. The maximum ordinate is thus=20/\/27r=7-98,

and the curve becomes

7/=7-98e-*'/5o.

When .r= a= 5, ?/=(7-98)(0-606)=4-84, P^Ni in the figure.

„ jc=2a=10, y=(7-98)(0-135)=l-08, PgNg „

,, .r=3t,=i5, iy=(7-98)(0011)=0-09, P3N3 „
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There is a point of inflexion where the curve changes its

direction at P^, also at the companion point F\ on the other side

of OB.

The areas ONiPiB, ONgPaB, ON3P3B, P3N3X represent respec-

tively the frequencies of errors to cr, to 2a, to 3cr, 3a and over

(considering only errors on the positive side, that is, deviations

above the mean), and the figure shows how very improbable is a

deviation from the mean exceeding 3a, for the area between the

curve and axis beyond this limit is negligible. Put in another

way, a range of 6a should include practically all the observations

in the sample.

The probable error has in the past received various names, such

as mean error, median error, quartile deviation, and although some

of these may seem more applicable and less confusing than the

name to which it has settled down, there is perhaps not sufficient

excuse for unsettling it again, even had we the power to do so,

by attempting a return to one of these old names.

If its magnitude be r it is defined to be such that the chance

of an error falling within the limits — r and +^ is exactly equal to

the chance of an error falling outside these limits, in fact it is an

even chance whether a particular error falls within these limits

or not.

Since area measures frequency it follows that the ordinates

drawn through the probable errors divide both halves of the normal

curve (above and below the niean) into two equal parts ; the one

above the mean, QR, is shown in fig. (44), and consequently the

area OBQR=the area QRX, in that figure. These ordinates there-

fore coincide with the quartiles, and the probable error is precis(ily

the same measure as the quartile deviation.

The magnitude of the error is readily calculated from the proba-

bility integral table, for, by definition, we have

1 r+r!<T

=
,
—

I e~^~'H^ (where x=a^).

Hence i=^= e-^-'H^,
V27T.'0

and the probability integral table at once gives

r=0-6745a=approximately |a.
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Thus we have the frequently quoted rule that the

quartile deviation=?(standard deviation), . • (7)

or probable error=0*6745 (S.D.)

The probability of an error lying between — 3r and +3r

1 ;+3'-

2 ,-3(0 -6:45)

= —^=1 e~^'''^d^ (where ?c=a^ as before)
V277-'0

=0-9570.

Thus the odds against a deviation exceeding three times the probable

error occurring in a single trial are about 22 to 1, or much the same

as the odds against a deviation exceeding twice the S.D.

There remains one other standard of measurement in connection

with errors which is at least deserving of mention, namely, what

we have previously called the mean deviation, which may be denoted

by ?;. It is simply the mean of all errors -without regard to sign
;

thus, since ySx measures the frequency of an error lying between

X and (x+Sx)

71=2 1 xydx / 2
I

ydx
Jo /Jo
/CO I rca

=
\ xe-^^'^-^-dx e-'^'^-^'^dx

Jo I Jo

•CO / -oo

=(t| ^e-^''-dd
\ e-^-'-di {where x=a^)

= -v/2ct / ^te-
- ''dt I \ e - 'V< (where ^^ =2^2)

.'0 / .'o

=V2ff
2

e

_ ~2

^ctV2]^

=0-7979(7,

hence the rough rule that the

mean deviation= ^(standard deviation) . . • (8)

It must be borne in mind that all the above rules relating to

errors—using the term as synonymous with the deviations of single

or sample observations from the mean of a considerable number of

the same character—strictly apply, as we said before, to the normal
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curve of error and are only approximately true for other distribu-

tions, the approximation being the closer the nearer they approach

to the normal form and the larger the number of observations

involved. They have been tested in some cases in earlier chapters

(see, for example, Chapter VII.), and the results obtained, even

with very skew distributions of comparatively small numbers of

observations, are at all events close enough to suggest the utility

of the rules in more favourable cases.

The effect of variability on errors. The probability of an error

lying between and t

1 /-«

\/2tt . Or.'o

Put x^^x'jm, and this becomes

V27T . CT.'i m

1 /•("")
.-x2/2(m<7)2

V2tt . {ma)
dx.

^
1 [

'-- - - Ti 1 1

1^ _i^tj

/r • t .
^

^ \ ' t
'

! \

f : • : I ;\

J !
' ' '

' \ h-.

.jL _j_ .
„ >...^- . ... .

;z 1 J B, _ ^c:
7 ^ ;"]

,

1 " ' \^ ....
jtoj-^f^ i

; ; I 4.._j—-'^Vl 1

f--

- - " ^-?
;<?-5^:::^:^:^.^-_ i : -^:.^<^;^:::::::::::::::::::

:;^'" i 1 X : * ii-.

-s--' ''K

iiiii---^^—.^ H !---|rT^i-j/t-r^--— : -r^-r i rri--'4ii..--..::--:

Fig. (45).

N2
..2t---

Thus, if the variability be increased m-fold the range of error (of

equal probability) is increased m-fold, so that if we have two sets

of N observations, with the variability of one set double that of

the other, the range of error also in the one set is double that which

is equally likely to occur in the other. This is brought out fairly

clearly in fig. (45), which is the result of plotting the curve

y
N

V27rcr
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in the two cases. The variability a of curve (1) is double that

of curve (2) ; if then we measure along OX in the figure

ONi-20N2=2<,

the area BjONiPi will be equal to the area B2ON2P2, showing that

the probability for an error between and 2t in the one case is equal

to the probability for an error between and t in the other case.

[James Bernoulli (1654-1705), the eldest of three remarkable brothers,

showed how the binomial theorem could be used to estimate the probability

that the ratio of the number of successes to the number of failures under

defined conditions should lie between set limits, where success means that a

certain event happens and failure means that it fails to happen.

It was C4auss who first actually published a proof (1809) of the equation of the

normal curve, although Laplace had suggested as early as 1783 the utility

of a probability integral table, je-'-dt. Gauss's proof depended upon certain

axioms which cannot be established and are not necessarily true, one of which

was that ' errors above and below the mean are equally probable.' Laplace

and Poisson improved upon Gauss and succeeded without assuming this

axiom, but with the aid of theorems due to Euler and Stirling, in developing

the continuous probability integral from the discontinuous binomial series.

Further extensions of the normal curve applicable to skew distributions

have been worked out by other writers, such as Galton and McAlister, Fechner,

Lipps, Werner, Charher, Kapteyn, and finally by Edgeworth, who has contri-

buted materially to the development of the idea of ' the Law of Great

Numbers.' Karl Pearson approaching the subject of skew variation from

the same point but by an original route, has discovered a complete system of

curves suitable for fitting almost all kinds of distributions in homogeneous

material, especially such as are met with in the biological world.

(See Todhunter, History of Probability.

Edgeworth, Law of Error in the Encyclopaedia Britannica (10th edition).

Pearson, Das Fehlergesetz und seine VeraUgemeinerungen durch Fechner

und Pearson: A Rejoinder; Biomelrika, vol. iv., pp. 169-212).]



CHAPTER XIX

FREQUENCY SURFACE FOR TWO CORRELATED VARIABLES

It may serve at this stage to widen the outlook upon the subject

of correlation for those who are able to follow it up on mathe-

matical lines if we briefly consider the algebraical expression for

the combined distribution of two variables.

Let the variables be X^, Xg. They may be absolutely independent

or they may be related in some way, but in either case we shall

assume it possible to set up a one-to-one correspondence between

them : thus, X^ might represent the marriage rate and Xj the

index number for wholesale prices, and we might always pair

together the X^ and the Xg which refer to the same year, as in the

correlation example in a previous chapter ; moreover this pairing

might still be effected even if there were really no other connection

at all between X^ and Xj.

If then x^, x^ typify the deviations of Xj, Xg from their respective

means (the means in the above case being derived by averaging

the figures for a number of years), it is possible to write down an

expression of the form

y=F{Xi, X.,)

for determining the probability of deviations between a^j and

{x^-\-Sx^), x., and {x^-^rSx.^), occurring simultaneously (in the same

year, in the above case) ; or, to put the same thing in another way,

yBx^Sx.^ would represent the proportional frequency with which

such deviations might be expected to occur together in a large

number of observations.

The frequency curve y=f{x), where yhx denotes the frequency

with which a variable with deviation lying between x and (a:+Sx")

from its mean value is observed in a given distribution, was repre-

sented by plotting corresponding pairs of values of x and y as

points in a plane. In the expression y=¥{x^, x.^), however, we have

three variables to consider, x^ and x^, and j/ which measures the

frequency of the simultaneous appearance of x^ and x.^. Such a

trio may geometrically be represented by a point P {x^, x^, y) in
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Tig. (46),

space of three dimensions, for {x^, X2) can first be located as a point

in a fixed plane and a height y may then be measured above this

plane as in fig. (46). Clearly as .r^ and x.^ vsLvy, y also varies, and

consequently the point P moves about in space, but it moves always

in obedience to the relation

y=F{x^, Xg).

This relation is called the equation of the surface along which

P travels, showing that it holds good for

the co-ordinates (.r^, x.^, y) of any position

which the point can take up on that surface.

It is convenient, however, to use the notation

* z=F{x, y)

in preference to y=^{x-^, x.^ for the 'fre-

quency surface,' because OX, OY are nearly

always taken to represent the axes of refer-

ence in space of two dimensions {i.e. in a plane), and by a natural

extension OX, OY, OZ are taken to represent the axes of reference

in space of three dimensions, fig. (47).

We proceed to discuss the frequency surface for two variables,

and we shall start with the comparatively simple case when the

variables are completely independent.

Frequency surface showing distribution of

two completely independent variables each

subject to the normal law.

Let X, Y be the variables, and let x, y de-

note deviations from their means X, Y, the

point (X, Y) being taken as origin of co-ordi-

nates and the usual notation being adopted.

Thusthe probability of a deviation betweena: and (.t+ 8a;) occurring

hx

Fio. (47

, X3
J—

5

<Txr-

V2i

and the probabiHty of a deviation between y and {y+hy) occurring

Therefore the probability of such deviations occurring together

since the variables are supposed completelv independent

277'CT,CT„

- 3/-/2<^y
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Hence the frequency with which such pairs of deviations are

observed together if n be the total number of observations

Denoting this by zSxSy, we get for the required frequency surface,

-^(4+4)
z=nl2Tr(T^y . e "'' <'y''

, . . (l)

If we give y some particular value, t/j, we find from the above

equation that the law of frequency for the corresponding x is

-i(£?+?di)

2Tr(7j.Gy

. e

277(7 a-CT^

,-x2/2<r^

-^ c
,

V 277 . (7^

where n^ has been written in place of

\V27T.ay

But this is evidently a normal curve in the plane X^OZj, having

the same mean, X, and the same S.D., a^, whatever be the value

of 2/1-

Hence all arrays of X are similar, having the same mean and the

same standard deviation, and this, by symmetry, also applies to

all arrays of y.

Now put z equal to some constant, k, in equation (1), so that

k-
2TTGy.ay

n

Since the left-hand side of this equation is constant for different

values of {x, y), it foUows that the right-hand side is also constant,

and hence

^+4=«. • • •
(2)

where c is a constant.

We conclude that the values of x and y which can occur together

with a given frequency, k, are such that the point {x, y) always lies

/
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somewhere on the ellipse (2) in the plane s=A% fig. (48) ; e.g. values

in the neighbourhood of .t^ and y^ occur with the same frequency as

values in the neighbourhood of Xg and 0, because in the figure the

points (xj, y^, k) and {x^, 0, A;) both lie on the ellipse defined by

7
^"

, V"z=k, — +J^=c.

The different ellipses which can be obtained by varjdng the

frequency, and consequently varying c, are clearly concentric,

similar, and similarly situated if they are orthogonally projected

on to the plane s— 0, for the effect of such projection is that any

Fio. (48).

point (re, y, z) drops Aowa. on to the point {x, y, 0) which stands

immediately below it in the plane XOY.
The general shape of the surface can be gathered from fig. (48)

where the ellipse in the plane z=k, and the normal curves in the

planes a;=0, y—0, and y—y^ have been dra%vn.

It will also be noted that if the scales of x and y are altered by

X 11

writing — =a;' and —
Or a,,

y', so that unit change in each may be the

same, the ellipse (2) becomes a circle

x'-'^y''=c.

This change of scales is equivalent geometricallj'^ to projecting

orthogonall}' the ellipse into a circle ; of course the planes of pro-

jection are not the same as in the previous orthogonal projection

mentioned.
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Frequency surface for two correlated variables. Let the variables

be X and Y, and let us work as before with their deviations x and y,

whichis equivalent to taking the mean point (X, Y)of all the observa-

tions as origin.

Now the line of regression giving the best y, or the y of greatest

frequency, corresponding to any x is

y- -r^'x,

with the usual notation, r being the coefficient of correlation

between X and Y.

Hence the error made in estimating anj- y from this equation

instead of taking the y given by observation is

V—y (observed) —y (estimated)

=y-r^x. [See fig. (49).]

Thus, corresponding to every pair of observations {x, y) there is

an 77, and the same rj Avill be repeated Y

just as often as the same pair of

observations {x, y) is repeated.

Therefore the frequency distribu-

tion of {x, Tj) must exactly correspond

to that of {x, y).

Further, the correlation of the

variables x and 7; is zero, for posi-

tive and negative errors r) are equally likely to occur for different

values of x\ in fact, this coefficient of correlation is 2J{xT})/na3XT^^, and

Fio. (49^

2{xi])=I! x[ y-r
O-x /J

=Z{xy)-r^-^.S{x'')

=np' P
no.

—np—np

=0.

Assuming then that the variables x and r) are quite independent,

the probability of them occurring together is readily written doAvn,

for it is simply the product of their separate probabilities.
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But the probability of a deviation between x and {x-\-8x) occur-

ring, if we consider this variable alone, is

-e
Sx

V27

and the probability of a deviation between rj and {r]-\-hi]) occurring,

if we consider this variable alone, is

6v ^ 2.,^^

A/27ra,

Hence the probability of a combined occurrence of such deviations

V27Ta^ /\V27TG^

27rCTa.a.

0x8 y]

-e

But na^'=2:iy-r^x

=w<T„2(l-r2).

Similarly, na^^=na^{\—r^),

where ^ is the error made in estimating x from x^=r—y\

Thus
Oy _ I CT„_ 1 (Ta;_ 1
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and il,+I^)=Lil+r'-<

=__ 1+r-.
)

1

or,^(l-r2)

1

Hence the probability of the combined occurrence of deviations

X to {x-\-Bx), Tj to {t]-\-87))

2770-a. . (TyVl— r^

thus, if we denote by zBxSy the frequency of the combined occur-

rence of deviations x to {x-^hx), y to iy-{-8y), when w is the total

number of observations, we have *

27r-\/l— r'^
• o'xO'i/

When the variables X and Y are completely independent, so that

r is zero, this reduces, as it should, to our previous result

n
e

-iV^"-|- ^' _2r '^^^ '\ ^

In the .surface z=fi . e '^"^^^
<^i'* <ri<ry/i-r2

^ , . (3)

where />t= == , if we give y some particular value t/j,

27TVl— r- . a^Uy

we find that the law of frequency for the corresponding x is

__JL_*^(l-r2)+('£-,M*}
=U,.e 2(l-r2)|o-/ '^V.T. <r,/ i

=/ti . e

=ju. . e

3/% 1 / X _yyi\2
"Wg 2(1 -rzA^ ^/ ^

, ^ (4)

[* For an outline of Karl Pearson's method of reaching the Law of Frequency
for two correlated variables, and certain deductions from it, see Appendix,
Note 11.]
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But just as

STATISTICS

(r-a)2
1 -i

y= =—

^

represents exactly the same normal curve as

shifted through a distance a along

the axis of x, fig. (50), so we con-

clude that the curve (4) in x and

z, in the plane y=yi, is exactly the

same as the normal curve

gV=l/2<r,;-
^e V.2(l-r2)

shifted through a distance ry^— along an axis parallel to OX. In fact

(4) represents a normal distribution for x, the mean, corresponding

to greatest frequency when 2= ^„^ ,^
, being determined by the

intersection with the surface (3) of the planes

y=yv
.y

and the standard deviation being CTj,V1— ^', which we note is

independent of y^, fig. (51). To put the same thing in another

way, the array of x's corresponding to a particular value y^ of y

have a mean deviating from X by r— . y^, and a standard deviation

a^Vl— r-.

In particular, when y=0, 2=yu.e
'''^'^'^-'^-\ a normal distribution

for X, the mean, corresponding to greatest frequency with z^fi,

being determined by the intersection with the surface (3) of the

X
J/

as before.

Similarly, when x=^Xy, we get as in (4) a normal distribution for y.

planes 2/=0, —=i—, and the standard deviation being a^vl—r^

get as in (4) a norn

2<rV-' 2fl-r2)\o-„ aJ
^

the mean, corresponding to greatest frequency when 2;=--^-^^, being

determined by the intersection with the surface (3) of the planes

y X
x=Xi, —=r—

,
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and the standard deviation being ayVl—r-, which is independent

of Xy In other words, the array of y's corresponding to a particular

value Xj^ of x have a mean deviating fromY by r—x^, and a standard

deviation ct^VI— /".

In particular, when x—0, z=^^e <'^'<^-'''\ a normal distribution

for y, the mean, corresponding to greatest frequency with z=/j,,

being determined by the intersection with the surface (3) of the

planes .r=0, ——r—, and the standard deviation being GyVl— r''.

By putting 2=some constant, k, and arguing just as we did in the

2

Fio. (51).

case of two independent variables, we find that all values of x and y

which occur together with the same frequency define points {x, y)

which lie on the ellipse

z—k, +^— 2/-- -c.

The different ellipses which can be obtained by varying the fre-

quency, and consequently varjdng c, are concentric, similar, and

similarly situated, if they are orthogonally projected on to the

plane 2=0, The planes giving the means of the x's, or the most

frequent x's, corresponding to particular values of y, and the means

of the y's, or the most frequent y's, corresponding to particular

values of x, meet z=0 in the lines of regression

l=,l. y X

Q^ ffj. CTj. O,
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X V
If we alter the scales of x and y by writing — =x' and —y'

so that unit change in each shall be of the same magnitude, the

frequency surface takes the form
1

" o?r

—

74^^ -'+!/'- - 2rj;';/')

2=/xe -(.'
"^^

1

When y'—O, z=iie.
-^^~'''^

, a normal distribution, the mean being

on the plane x'=ry', and the standard deviation being Vl—r'^.

Similarly for a;'=0. When y' ::=y\, z=fj,e e
^(i-^^) i

^ ^

normal distribution, the mean being on the plane x'=ry', and

the standard deviation being Vl— r- as before. Similarly for

x'=x\.

Again the ellipse which is the locus of the points {x'y') obtained

by putting 2=constant, k, corresponding to variables which occur

with the same frequency, is (in the plane z=k) now

x'-^y'-—2rx'y'=c,

and, projecting on to the plane z=0, the lines of regression are

x'=ry', y'=rx'.

These lines are the intersections with z=0 of the planes containing

the means of the x"s, or the most frequent x"s, corresponding to

particular y"s, and wee versa.

X v
Since, geometrically, the transformation — =x', —=3/', is equiva-

lent to an orthogonal projection, we may learn something about

the more general ellipse by considering properties of the simpler

projected curve which are not changed by projection.

Let us first, however, find the magnitude and direction of the

axes of

x"--]-y''-—2rx'y':=c.

By turning the axes through some angle 6 this equation is

reducible to the form

which is the ordinary form for an ellipse when its axes lie along

the axes of co-ordinates. But the equation in x'
,

y' is clearly

symmetrical about the lines y' ^=x' and y' =^—x', because y' and x'

or y' and —x' can be interchanged without the equation being

affected. Hence these lines must give the directions of the major

and minor axes.
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To turn the axes of co-ordinates through an angle of 45°, fig.

(52), we must write

x =x" cos 4:5°— y" .sin 45 o x"-y"

V2
x"-\-v"

y'^x" sin 45°+?/" cos 45°=' ^"-,

V2

Fig. (52).

The equation of the ellipse thus becomes

2r
{x"-y"f

,

{x"^y"f ^S^"-y"){x''+y'')

2 2 ^2^/2

x"-+ y"-- r{x"-- y"- ) =c,

a;"2(l-r)+ 2/"^(l+ r)=c,

=1.

\-r 1+r

=c,

I.e.

i.e.

i.e.

Hence the semi-major axis is a= / , and the semi-minor axis
•^ 1—

r

c c

is 6= . / . We note that as ?• increases from to 1. a increases
1+ r

from Vc to 00, while b decreases from Vc to ^ / - . Also, as r decreases

from to —I, a decreases from Vc to , / - -, while b increases fromV 2

Vc to 00.
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The ellipses, x'~-\-y"-—2rx'y'—c, corresponding to different values

of r all pass through the points of intersection of

x''-\-y"^=c and x'y'=0.

But x"^-\-y"~==cis what the equation of the ellipse becomes when r,

the coefficient of correlation, vanishes. The connection between

these curves is shown in fig. (53), which represents their projection

on to the plane 2=0. A positive correlation between x and y
might be expected to increase the y corresponding to a particular

positive X, if the frequency be fixed beforehand, and that is the

effect which the figure also would suggest.

Fio. (53).

Now, in x'--\-y"^—2rx'y' =c,

the lines of regression are

y'=rx', y'=-x',
r

and the axes of the ellipse are

y'=x'
,
y'^—x.

Hence the lines of regression are equally inclined to the axes of the

ellipse as well as to the axes of co-ordinates, fig. (54).

Further, the pair of lines

y'=x\ y' =—x'

form a harmonic pencil with the pair

.r'=0, i/'=0,

and also with the pair

, , , 1 ,

?/ =zrx
, y =-.e .

r

This is obvious from fig, (54).
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Now project back to the ellipse

xy

The algebraical transformation for this is merely

2r"^ =constant.

x'^-, y'=±

261

Y V
\ ,

^--

-/I,/

V /
^\\

/^l
X'

Fio. (54).

Since the harmonic property is unaltered by projection we then

have the pair of lines

(Ty d^ Oy CTa

harmonic with the pair

.r=0, y=0,

and also with the pair

y X y \ X

Hence the two lines of regression corresponding to maximum
correlation {r= -\-\ and r=— 1) are harmonic with

(1) the axes of co-ordinates
;

(2) the lines of regression for any r.

Again it may be easily seen that the lines

y'=rx' and x'=0

are conjugate diameters of the ellipse

x'-^+y'-^-2rx'y'=^c, , . . (5)

for they may be written as one equation thus :

rx"^—x'y'=^0,
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and this represents a pair of lines harmonic mth the (imaginary)

asymptotes of (5), namely, with

x'^-\-y'i—2rxy'^(i.

[The criterion for ax--^2hxy-\rby-=0

to be harmonic with a'x'-\-2h'xy-\rb'y-=^0

is ab' -\-ha' =2hh' .']

But it is a well-known property of conies that any pair of lines

harmonic with the asymptotes are conjugate diameters of the

conic.

Similarly it may be shown that the lines

y' =-x' and rj' =^0
r

are conjugate diameters of the ellipse (5).

But, on projection, the conjugate property also is unaltered.

II X
Hence the lines — =r— , .r=0,

y 1 X
and the lines —=

,
y^O

are conjugate pairs of diameters of the ellipse

X-
,

y- ^^ xii

But for conjugate diameters the midpoints of all chords parallel

to either lie on the other.

Thus we come back again by another route to the familiar line of

regression theorems that, for a given r, all arrays parallel to x=0
V X

have their means on— =r— , and all arrays parallel to y=0 have

., . X y
their means on —=r—

•

a» a,,



APPENDIX
1. Compound Interest Law. If the capital increases continuously,

instead of going up by jumps at the end of stated periods, the con-

nection between the original principal S^,, the rate per cent, per

annum r, and the amount Sj at the end of i years is given by

for the rate of increase is measured by

dS_ rS

dt~]M'

which leads at once to the above equation on integrating.

Other instances of the same law are :

—

(1) .4 particle moving against a resistance j^roxiortional to its

velocity, t\=Vge~''\

where i\ is the velocitj^ at time t, v^ is the original velocity, and c is

some constant.

(2) The variation of the pressure of the atmosphere ivith height,

where pJ^ is the pressure at height h above a surface level, p^ is the

pressure at the surface, and c is some constant.

(3) The rate of cooling, d,=d„e-'',

where 6f is the excess of temperature at time t of the hot body

over that of surrounding bodies, 6^ is the excess when the measure-

ment begins, and c is some constant.

2. Weighted Mean. Let the observations be represented by the

different values, x^, .r.,, . . . x„, of the variable concerned, and let

the respective weights attached to these observations be /i,/2, - fn^

so that the average, by definition,

A+72+ •••+/„ '
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Now, suppose a different set of weights be chosen, namely.

/'i./'2' • • • f'lv giving a ncAv average

•^ij l'T^2j 2 1 • • • I '^nj n

/'l+/'2+ • • +/'.

The difference between these two expressions

/1+/2+ • •
• /'i+/'2+ • •

•

{/1+/2+ • • •)(/'l+/'2+ • . •)

]{fJ'2i^\-'^2)-f2f\{Xi-X2)\-\-\fJ'3{-Xl-Xs)-fJ\{Xi-X^)\+ . . .

(A+/2+ • • •)(./'i+/'24- . . .)

^
(/1+/2+ • • ){f\+r2+ •)

Hence this difference is very small and the averages are very

nearly equal if the weights /j, f^, f^ . are replaced by others

f\, f'2, f's • very nearly proportional to them, so that fjf'i,

fjf'o, Jzlf'z • ^^® ^^^ ^^^ from equality, and this is the more

pronounced if the observations x^, x.^, x^ . . . themselves are all

of the same order of magnitude and the sums of their weights,

UfandUf, are large so that the expressions of ty])e{Xi—X2) /{I!f){I!f')

are small.

3. Geometric and Harmonic Means. Given ?i numbers

a, b, c . . .

their geometric mean, g, is defined by the formula

g=':yiabc . . . ),

and their harmonic mean, h, is defined by

h a c

We note that when a=b=c=: . . . =k, say,

then g— lj{kkk . . .)= l/{k-)=k.

and
h k k k

n
' ' ' ^k

so that h=k.
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It is worthy of remark that if the geometric mean be adopted as

average in discussing the index numbers of prices it possesses an

interesting property which does not hold for any of the other means

in common use.

Suppose the prices of n standard commodities at three successive

dates be represented by (aj, b^, Cj . . . ), {a.^, b^, c, . . .). (c^3^ ^3> C3 . . .).

Then the index numbers of the separate commodity prices at tlie

third date, taking the prices at the first date as standard, are

100'^^ 100-^ lOO'i . . .

«! b, c,

Hence the geometric mean of these n index numbers together

V \ Oi h Ci

= 100gr3/j7„

where g^, g^ denote the geometric means of the u prices at the two

dates.

It follows that the ratio

index number of prices at 3rd date with prices at 1st date as standard

index number of prices at 2nd date Avith prices at 1st date as standard

_ 1Q06^3M

lOOgJg,

=93/92-

It is therefore quite independent of the particular date chosen as

standard.

4. The Mean of Combined Sets oi Observations. (I) Suppose one

variable x is expressed as the sum of a number of other variables,

thus x=a-\-b-\-c-\- . . .,

and suppose that we have n different values of the variables, giving

equations of the type

a;2=a2+^2+C2+ • • •

a^n=an+^«+ C„+
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Hence, by addition,

^-l+ '^•2+ • • +-^'„=K+ • • +«J+(6i+ . . +6n)+(Ci+ . . +cj+ . .

so that nx= nd-\-nS-\-nc-\- . . .

x—d-[-b-\-c-{- . . .,

where x, a, b . . . denote the means of the n values of the respec-

tive variables.

Thus the mean of a sum equals the sum of the means, and, if some

of the positive signs in (a+6+c+ . . .) are made negative, there

will evidently be a corresponding change of sign in (a+^+ • • •)•

Example.—Suppose 100 family budgets are collected and the

items in each are separated under five heads—rent, food, clothes,

coals and light, sundries. The expenditure, x, in each budget would

thus be expressed as the sum of five variables, a, b, c, d, e, and the

mean of the 100 dififerent x's ^A'ould equal the sum of the means of

the a's, the 6's, the c's, the rf's, and the e's.

(2) Sets of observations are made which differ in locality or time or

some other respect. To find the resultant mean.

Let I observations of the variable x refer, say, to one date,

,, m ,, „ „ „ ,, a second ,,

,, n ,, ,, ,, ,, ,, a third ,,

and so on, and let the means of these successive groups of observa-

tions be Xi, x^^, x'„, . . . , so that we may MTite

Xi=ZxJl, x^^ExJm, x^^SxJn, . . .

If then X be the resultant mean, we have

l-\-7n-{- . . . l-\-m-{- . . .

Exajnple.—If the school children in the different schools of a

county are weighed, I children in one school, m in another, n in

another, and so on, giving mean weights x^, x^^, x„ . . . , the

resultant mean weight for the children in all the schools combined

is then given by the above expression.

5. Me^n and Standard Deviation of a Distribution of Variables.

Let x^, x.^, x.^ . . . x^ denote the deviations of each value, or group

mid-value, of the observed organ or character when measured from

some fixed value, and let f^, f^, fz • • fn denote the observed

frequencies of these respective deviations.
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The arithmetic mean of the variables is thus given by

^= (/l-^-l+te+ • • • +/n^n)/(/l+/2+ • . • +/n),

referred to the fixed value as origin.

We may conveniently represent the deviations x^, X2, x^ . . • by

lengths measured from an arbitrary origin along a straight line,

in which case the point defines the position of the fixed value

from which the variables are measured.

Let P mark the position corresponding to a typical variable and
let G mark the position corre- _ ^ e ^
sponding to the mean, x. Thus i:

—' ± i

OP=a*, 0G=^% and if we denote ^ -^" ' ^

the distance of P from G by ^, we have

x^x+^.
Hence

^=(/A+/2'f2+ • • • +/n^-n)/(/l+/2+
Hfl{^^-^l)+M^+U+ • +fn{£-

=[^(/l+/2+ . . . +/„)+ (/ili+/2f>+ •

Therefore {f,i,+f,l,+ . . . ^hL)-^
The expression {!iXi+f^x.,+ . . . -\-fnXn) is called

moment of the distribution referred to as origin. We conclude that

when the chstribution is referred to G as origin, i.e. when deviations

aremeasuredfrom the mean of the distribution, thefirst moment vanishes.

• • • +/n)

-L)ViIi^f2+ • • •

• • +/nln)]//l+/2+
+/n)

r-fn)

. (1)

the first

Frequency Distribution Table.

(1) (2) (3)

Deviations of Var-
iables from some

fixed value.

Frequency of

Deviations.

Product of Nos.
in Col. (1) and

Col. (2).

Product of Nos,
in Col. (1) and

Col. (.3).

/i

/2

fz

K

fi^i

f^2

fn^n

f^2-

N N'l N'2

In the notation of the above table, where the dashes are omitted

in Nj, N, when the mean is origin, we have

;c=N'i/N andNi--0.
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Again, the root-mean-square deviation, s, measured from the

arbitrary origin 0, is given by

=N'2/N,

and N'2 is called the second moment of the distribution referred to

as origin.

Substituting as before we have

s''=Ul{^+Lr^ • • +/J•^•+^«)']/(/l+ . • +fn)

jHf,+ . . +/n)+ 2^-(/i^i+ • • • +/n^J+(/lf\+ • • -\-fnL')

(/l+ . • • +/J

since /i^it- • • • -^fJn=^-

Hence s''-x^-fcT^ . . . (2)

where a is the root-mean-square deviation measured from G as

origin, or the standard deviation as it is called.

From this result it is clear that ct is always less than s, or the root-

mean-square deviation is least when measured from the arithmetic

mean.

Generally, if we write

Vi:={h^'+ • • +/.^/)/(/l+ • • • +fn),

V,= {fii^'--h . . . /nl/)/(/H- • • • +/n),

where 2J(fx'') and -S'i/I'") may be called the kth moments referred to

and to the mean as origins respectively, so that vi—O, V2=o^,

p'2=s^, we have

l''*= [/l(ll+^f+ • • • +/n(fn+ ^)'']/(/l+ • • • +/n)

(/l+ • • • +/n)

For example, when h=2, since vq= ^ and 1^1 =0,

v^^v\-'k'' . . . (2) bis

Again, when A;=3, v3=-v' s—^i'i^—^ • • • (3)

and, when k=4, v^=^v\'-^i>3i-6v^x'-x* . . (4)

There are interesting statical analogues to the above results

concerning the mean and standard deviation.
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Let us imagine a set of weights, /], /g, fn . . . suspended at

Pj, Po, P3 . . . from a straight horizontal bar, and let the distance

of any typical weight / from some arbitrary origin on the bar be x.

Then the first moment,

(where some of the x's may be negative corresponding to weights

suspended to the left of 0) measures the total turning effect of all

the given weights about 0, and if we further imagine all these

weights replaced by a single weight ^ -_-._- .v -^v

equal to their sum (/1+/2+ • • • ^
—"^—^ r^—

-}-/„), then, in order to produce X

the same turning effect, it would /
have to be placed at a point G, the distance of which from

is given by

Thus x={f,X,^f,X,-i- . . . -^f^xJ/if,^f,-{- . . . +/J,

and, statically, this defines the position of the centre of gravity of

the given weights, /j, /g, •••/„, relative to 0.

As before, x=i:j{x-\-^)/i:f

=^x+SmEf;
hence f1^1+^2+ • • +AI«=0,

and, statically, this means that the turning effect of f^, fz • • • fn

about G is zero, in other words, the bar would balance freely about G.

Again, the second moment,

/l^"l+/2^'"'2+ • • • +/n^'n"j

measures the moment of inertia of the weights /j, /a • • • /« about 0,

and, if we imagine these different weights replaced by a single

weight (/i+/2+ • • • +/n) as before, the moment of inertia will

be unaltered if the latter be located at a distance s from 0, where

(/1+/2+ . . • +/nK^=(/r'«^+/2^^+ • • • +/„^V-);

therefore s'Mh^\+ . . . +Aa:„2)/(/,+ . . . _,_yj

=X'-\-a-,

as before, and the interpretation of this is that the square of the

radius of gyration of the system of weights about equals the

square of the radius of gyration about G, the centre of gravity of

the system, together with the square of the distance of G from 0.

Also, 5 is clearly least when it is measured from G.
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G. The Mean Deviation a Minimum when measured from the

Median. Consider first the case when only two different values of

the variable are observed, X^, X2, and let their deviations from an

arbitrary value, 0, chosen as origin, be respectively x^, x^.

If /i, /g be the observed frequencies of these values, the sum of

their deviations from is

^~
V X

'^^'

^x ^'^^ich is clearly less when the
' t —^———

—

y value lies between X^, X2
' - than when it is smaller or

X, .r, o x^ Xj greater than both of them.

f^ f Choosing 0, therefore, be-

greater frequency we write the deviation sum

where x is the deviation of either of the values X^, Xj from the

other, and (fi—f.^) is positive since /i>/2.
Now this is evidently least w^hen {f-^—J2)^1 vanishes, i.e. when

(1) ^1=0, in which case coincides with Xj, the more frequent of

the two variables, or, when (2) /i=/2, and in this case, when the

two observed values occur equally often, the deviation sum is

constant for any origin between X^ and Xg.

When several different values of the variable are observed, they

may be arranged in order of magnitude, X^, X2, Xg . . . X„, from

the least to the greatest, with frequencies
f-^, f.^, f^ . . . fn-

If /i>/„ we pair off /„ of the X„'s with /„ of the X^'s ; the devia-

tion sum for this pair is least and remains constant when measured

from any origin between Xj and x X X X«-i X
X„. We next pair off some or all i ^ 1 r' "i

of the Xj's which remain against ' "
''

an equal number of X^.^'s and the deviation sum for this pair is

least and remains constant when measured from any origin between

Xi and X„_].. If some X^'s still remain, we pair them off so far

as we can against an equal number of X^.g's but, if it be X„_i's

that remain, we pair them off against an equal number of Xo's.

This process can evidently be continued until ultimately we

reach the origin from which the mean deviation of the whole

distribution is a minimum, for if any X be left unpaired the origin

will coincide with that X. Otherwise, the deviation is least wheii
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measured from any value between the last two X's paired ofE

together, and within that range it is constant.

Since, by definition, the median is the value of the variable half-

Avay along the series of given observations, ranged in order of their

magnitude and assigning each its due weight or frequency, it is

clearly such that a balance can be effected hy pairing off the values

on either side of it against one another in the manner explained

above ; it therefore follows that the mean deviation of a frequency

distribution is a minimum when the deviations are measured from

the median.

The statical analogy to the median also is worth noting. With

the same notation as before, the moment or turning effect of two

forces, /j, /a, about is _^^_ . . ^ ^

/l^l+/2^2*
OX, X

But in this case, if be taken y- \

at some point in between X^ y A
and Xg, since the mean devia

tion sums the separate devia- ^
tions Avithout regard to sign, I

we must imagine /^ reversed ^
so as to produce a turning effect in the same direction as before.

The moment \\d\l then be still (/la-'j+A^'a)) ^^'^ i^ is less when

occupies such a position than when it is on X^Xg produced in

either direction.

Taking 0, therefore, somewhere in between X^ and X2, the moment
may be Avritten

=/2(^i+-'^'2)+^i(/i-/2)

;

and, if /i>/2, this is least when x^ vanishes, that is, when coincides

with Xi, but if /i=/2, the two forces constitute a couple, and the

moment is the same whatever position occupies between X^
and X..

7. The Method of Least Squares. To the student \\'ho is un-

acquainted with the dififerential calculus, the following descriptive

argument, the basis of the principle of least squares, for determining

the values of m and c which make

(ma;i+c-2/i)-+ (m.r2+c-y2)-+ • • • -\-{mx„-^c—y„)- ... (1)

a minimum, may prove instructive.

Let us call the above expression E and let us suppose that different

values are given to m while c remains unchanged ; in that case E
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will vary with m, and we might imagine the different values obtained

for E plotted against the corresponding values of m giving a curve

of some type. Such a curve may rise and fall in wave -like fashion

as in the figure, resulting in maximum points like A and C, and

minimum points like B, where we define a maximum point to be

such that, as we move away from it along the curve, whether to

left or right, the size of the ordinate (and therefore the value of E)

decreases ; likewise, a minimum point is such that, as we move
away from it, the ordinate (and therefore also E) increases. In

the neighbourhood of such points it is clear that the size of the

ordinate, such as Aa or B6,

changes so slowly as to be

practically stationary.

Suppose then that m and

(m-j-ju.), />t being very small,

are two values of m respec-

tively at and near a minimum
position on the curve, i.e. a

position like B corresponding

to a minimum value for E.

Since E near such a point

does not differ appreciably from E at such a point, we may prac-

tically equate the two expressions obtained for E by substituting

(m+/i) and m respectively for m in (1), thus

(m+ yLi.Ti+ C-i/i)2-f (wi+/X.T2+ C-2/2)2+
= (m.ri+c-?/i)2+(mx'2+c-?/2)2+ . . .

=(mXi+c-?/i)2+(ma:2+c-2/2)--f- • . .

[(maJi+c-i/i)2+2/xa:j(m.Ti+c— ?/i)+/^Vi]+ . . .

=(wa;i+c-?/i)2+ . . .

Thus [2xi{mXi-\-c—yj)-\-ixx'^j}-\- . . . =0.

Now, the smaller we take fx, the nearer to the truth does this

result become. Hence, by making fx tend to zero, we are led to

the strictly true relation

Xi{mXi^c-yi)-{- ... =0.

This is one of the equations in the text. To obtain the second,

we keep m constant and vary c.

Suppose c and (0+7) are two values of c at and near a minimum
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position on the curve ; then, equating the two corresponding

values of E, we have as before

(m^i+c+y— yi)-+ ={mx\+c—yi)-+
-={mx\+ c-yi)--{-

=0.

[{mx^-\-c-yi)-+ 2y{mXi+c-yi)+y-]+

Thus [2(wx-i+c— ?/i)+7]+
and, proceeding to the Hmit when 7 tends to zero, we reach the

other equation in the text, namely,

(m.ri+c-y,)+ . . . =0.

[The Method of Least Squares came first into prominence in

Astronomy in connection Avith the determination of the best value

to take when a number of observations, apparently equally reliable,

give results not quite in agreement. If, for instance, x be the true

value of some variable, and if .rj, x.,, x^ . . . a'„ be the results of

n observations, the method of least squares assumes x to be given

by making

ij= (^x-Xi)'^+ {x-x.;,)--\- . . . +{X-Xnf
a minimum.

Now — =2(,f— a;i)-r2(.i-— .{•„) |- . . . +2(.f—.T„), and this vanishes
dx

Avhen {x—Xi)+ {x—x.,)-\- . . . +{x—xj^0,

i.e. a;=(.ri4-.r2+ . . . -j-xj/n,

so that in this case we are led to the ordinary arithmetic mean of

the 71 observations as the best value.

The method was used by Gauss as early as 1795.]

8. To prove

•+00

J -co
^''Ax^Vtt.

Let
.'-oc

thus, also,

r+co

1= e-^'dy;
.'-co

therefore, 12= e-^dx
+03

' -co

'+00 ,"+cor+oo ,-+00

=
I I

e-^^+'^'^dxdy
J -OD .' - CO

= e-'ydrdd
Jr== o.'e=o

s
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(by changing to polar co-ordinates)

.'o .'0

=

=(i)(27r).

Hence 1=1 e-''''dx= Vn.
J-OS

9. To prove :—

(1) r(n+l)=nr(n). (2) B(m, n)=

(1) r(?i+l)=i a;"e-^dc
.'o

,-co

=— / .x-"rf(e-*)
.'.r--n

r(m)r(n)

r(m+n)

'

.r"e-

=nT{n),

because the expression in square brackets vanishes at both limits.

(2) r{m)r{n)=f e-^^"'-hIi( e-^rj^'-^dr,
Jo Jo

/CO I'CO

— I e-^'^x-"^'-'2xdx\ e--''~ij-'^--2ydy,
Jo Jo

where x-=^, y'^=^r].

•cm rco

Hence r{m)r{n)=i e-^'^+-'^'>x-"'-hj-'*-Mxdy
.0 .'o

= / e-'Y-"'+2«-2 cos2"»-'0 sin^"-!^ rdrdO
Jr = oJe=--o

(by changing to polar co-ordinates).

Thus r{m)r{n)=! e-'V-'"+-"-Wrf cos-'^-W sm-^-^ddO
Jo .''J

if g-;'^m+n -Ig^p - 1^-1(1 -^)'""'rf^l.

where p=r2 and /:=sin2^
;

therefore, r(m)r(w)=P(m+?t)B(w, m)

^r(m+w)B(w, w)

by symmetry.
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10. Elementary Method of Testing the Probability Integral Table.

The reader may find more satisfaction in using the probability

integral table if he tests for himself one or tAvo of its results by

means of squared paper or in some other wixy.

We have seen that the probability of an error between and a^

is given by the expression

V27r.'o
^

Put ^— V2x, and this becomes

1
-

—

i
e-'^dx^i e-^dx \ e-^W.r, by Note (8)

=area OBPN/area A'BA, in the tigure.

Now the graph of y=e~'^ is draAvn in fig. (40) of the text, and it

is possible therefore to get an

approximation to the above

result for any value of x by

counting the number of small

squares in that figure enclosed

by the areas corresponding to

OBPN and A'BA respectively.

Each complete small square

may be reckoned as 1 , and each

portion of a square may be

reckoned as 1 if it exceeds half a square and as zero if it is less

than half a square.

This gives, for example,

1 rO-25

*^V.r =98/707 =0-139,

jy=e-

Vtt-'O

whereas the tables give 0-138.

For a value like ;r=0-71, count the squares in the usual way
between curve, axes, and ordinate a;—0-70 : then add to the result

one-fifth of the number of squares in the small slice of area between

curve, axis, and ordinates .t;=0-70 and x=0-~o. We get

1 /""' o—= e-^c;a;=240/707 =0-339

as compared with 0-342 from the tables.

These results are not unsatisfactory considering the rough nature

of the method followed to obtain them.
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11. The Law of Fretiuency in the case o! two Correlated

Variables with certain Deductions therefrom— [based on Professor

Karl Pearson's memoir, Regression, Heredity and Panmixia {Phil.

Trans., vol. 187a, pp. 253-318)].

Consider two variables whose deviations, x and y, from their

resiJective means are due to a number of independent causes, the

deviations in which from their means can be quantitatively denoted

by €i, €2, • . . e™.

We assume that each e deviation is so small compared to the

mean value from which it is measured that x and y can be sensibly

expressed as linear functions, thus

a;=aiei+a2e2+ • • . +a»ie,„ • • • (1)

2/=6iei+V2+ • • • -^K^n '
• • (2)

(Some of the as and 6's may be zero, and if x only involved, say,

fj, €2 • • €;., and y only involved ej.+i . . . e,,^, then it would be

natural to expect no correlation between x and y.)

We further assume that each e varies according to the normal

laAV with S.D. CT with appropriate suffix.

Equations (1) and (2) show that the same x and y may arise in a

multitude of different ways obtained by varying the e"s so that

their weighted sums (the a's and 6's being the weights) remain

unaltered. The probability that the particular deviations l^'ing

between

ti„(ei+Sfi)> 62.^(^2+8^2)' • • • e„„(e,„+ Se,J

shall concur, since they are all independent, is

\GiV27r / \a„y27T

But, \vriting

a3e3+ • • • +ct„,e„,=a, 6363+ . . . +6„,e,^=^,

equations (1) and (2) become

aiei+«2f2+(a— •^)-=0

^e,+6262+(/3-y)=0.

Therefore -

And, for any function v,

J J J J \oei de-2 oe^ oej/

=r (a^b^- a2bi)jjvdeid€2.
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Hence

The ^o/aZ ijrobability for deviations between a; (x-j-Sx) and

y^iy+Sy) is obtained by integrating z between limits —CD and +oo
for all the e's from e^ to e,,,, and it is not very difficult to see that

this will ultimately lead to an expression of the form

C . SxSy . e-^^^-'^^^-y+^y''\

This is the required law of frequency.

To find the meanings of the constants a, b, h. The total probability

for a deviation between .r (.r+Sa;) associated with any deviation y is

.'-co

J -co

^CVTT/bSxe-'''^"^-''-^'\

But if X be subject to the normal law, the probability for a devia-

tion between a;^(.r+8.r) is

^
8x

-a-'/io-x^

V277 . a,

where a^. is the S.D. of x independent of y.

Comparing these two results, we have

l/2a^'=(ab-h')/b=a(l-r='),

if r=— h/Vab.

Similarly, l/2CT/=(ab-h')/a=b(l-r'),

so that h=—r\/ab=— r/2a^o-y(l— r").

Again, we may integrate z for all values of x and y, and so get

the total frequency, N, of the {x, y) pair.

,--rCO -+00

Thus. N=C e-^'-'''-^-^'y+''^-^dxdy

. -co . - CO

=CV7Tjbj'^\-''<"^-^"-^'''dx
J -co .

=^CVT^bVWibl{ab-¥)l



278 STATISTICS

Hence
TT

TT

N
27ra,(T,V(l-^')

Thug 2=Ce 2(i-7-.^)L<r/^ cr.^, <-JS.rSi/,

where C has the above value.

It still remains to interpret r and to see that it is really the

coefficient of correlation as defined in Chapter x. For this purpose

let us suppose we have observed w pairs of associated x's and y's,

namely

The probability for such a concurrence, taken along with a given

value for r and assuming the observations independent, is pro-

portional to

1
1 rSt2 2>-2a\v 2j^|"l

_ ^^ [-in-^rnK],= {l-r-)-"^-e 2(1-'-)

where k ^Uxy/nar^y

-^ g 2 1 - /-

Now the probability of this particular distribution is greatest

when -

i log {l-r^-)+-^
l—r-

is least, and, differentiating with respect to r, this leads to

2r {l-r^-){-K)-\-2ril- Kr)
*. -i- u
h-f^ (l-r-)2

i.e. -r(l-r-)-/c(l-r-)+ 2r(l-«?-)=0,

i.e. -r+r3-/<:+/cr2+2r-2/fr2=0,

i.e. (r-«)(l+ r2)=0.

It is not difficult to show that r=-K gives a minimum ;
hence the

required probability is a maximum and we get the best value for

the coefficient by taking

r —/f =Z'xy WjCTy.
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CERTAIN CURRENT SOURCES OF SOCIAL STATISTICS

Any one who is anxious to get reliable figures bearing upon some

social matter is somewhat at a pause unless he is thoroughly con-

versant with all the statistical ramifications of Government autho-

rities, local and national, of trade unions, friendly societies, and

hosts of other bodies of a public or semi-public character.

While recognizing the lavish outpouring of statistics of all kinds

upon a multitude of diverse topics every j'ear, and aitpreciating the

immense care and patience shown by those who are responsible for

their collection and preparation, one cannot but deplore the lack

of any co-ordinating principle in general between one body and

another either in deciding what statistics shall be collected, by

whom and when they shall be collected, or how afterwards they

shall be tabulated and presented to the public. Too often a narrov.-

minded jealousy prevents one authority from consulting mth
another, and such co-operation as does exist is due largely to the

efforts of able and enlightened individuals. The result is that a

vast amount of labour and expense goes waste and the loss to the

public is incalculable, but the public do not care, and they do not

care because they do not know.

At present, to quote from an influential petition on the subject

recently presented to His Majesty's Government, ' It is almost

universally the case that any serious investigation is reduced to

roughly approximate estimates in relation to some factor which is

essential for its result. ... It is not too much to say that there is

hardlyany reform, financial, social, or commercial, for which adequate

information can be provided with our present machinery.' But

this state of things Mould be partly remedied by adequate control

such as might be secured by the establishment of a central statis-

tical office M-ith a minister in charge who should be responsible for

unification so far as possible in the collection, tabulation, and issue

of all public statistics.

It is scarcely possible for a single private individual to make

a quantitative investigation of any social question on a large enough

scale to produce results of real value ; conspicuous instances like

Booth and Rowntree might seem to be exceptions to this rule, but

even they had a number of workers acting under their direction,

without whose aid their task would have seemed almost hopeless.
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For such statistics as we have we are therefore dependent upon

Government departments, local authorities, public officials, trade

associations representing employers or labour, public companies,

and so on. The reader Avho A\dshes to get some idea of the extent

and the limitations of official British statistics is referred to the

admirable introductory chapters of Bowley's Elements of Statistics.

Here we cannot do more than mention a very few of the most

important sources whence such statistics are derived.

The most voluminous of all our records is probably the Census

of the Pojyidation which is taken every ten years. Its scope is but

faintly realized by enumerating the chief subjects on which the

Registrar-General asked information from each householder in 1911,

namelj'

:

(1) Numbers and Geographical Distribution of the Population.

(2) Nationality' and Birth-place.

(3) Numbers at Different Ages, Male and Female.

(4) Numbers Single, Married, and Widowed.

(5) Sizes of Families, including Children Dead.

(6) Numbers engaged in different Professions and Occupations.

(7) Numbers Blind, Deaf, Dumb, not in their Right ]\Iind.

(8) Numbers occupying Dwellings of Different Sizes as measured

bj' the Number of Rooms.

This may seem an ambitious scheme when it is stated that the

mere enumeration of the people was successfully opposed less than

two hundred years ago as ' subversive of the last remains of English

liberty and likeh^ to result in some public misfortune or an epidemi-

cal disorder,' and the first census was only taken in 1801. [See

Article in the Encyclopaedia Britannica on the subject.]

The results of each census are published in bulk}' volumes as

soon as they can be reduced and tabulated, a process which, of

course, takes a considerable time even for an army of workers

with calculating machines and every modern device to facilitate

their progress. It is to be regretted that more is not done to

advertise so valuable a record of work by publication in a cheap

and attractive form of a summary of matters which vitally affect

the good of the commonwealth. As it is, the census volumes tend

to be purchased only by public authorities and officials who require

to use them occasionall}' as books of reference.

Neglect of the blandishments of advertisement—to be commended
in general because such neglect is somehow associated with the

presentation of all truth^may be perhaps carried too far in the

issue of statistics.
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It will be noted that in the periodical census no mention is made
of wages though the people are classified as regards occupation,

and for information upon this point we must turn to another source.

The last general census of wages was taken in 1906, following

and improving upon an earlier inquiry twenty years before, but,

in connection with an inf(uir3^ by the Board of Trade into the cost

of living of the working classes, information was collected as to

rates of wages in 1912 of Avorkpeople in certain occupations in the

building, engineering, and printing trades, these being selected as

industries common to most towns, and because the time rates of

^\ages paid in them are largely standardized.

The 1906 inquiry into earnings and hours of labour, unlike the

decennial census, was conducted on a voluntary basis and was

never wholly completed. In brief it set out to discover from

emploj'ers :

—

(1) The Numbers of Working-people Employed in Various

Occupations, distinguishing Men, Women, Lads, and Girls.

(2) The Nature of the Work done and the Rates of Wages Paid,

distinguishing Time Rates from Piece Rates.

(3) The Hours Worked, distinguishing Under- or Over-time from

Normal Time.

The ground actually covered by the inquiry embraces the fol-

lowing trades : Textiles, Clothing, Building and Woodworking, Public

Utility Services, ]\Ietal, Engineering, and Sliipbuilding—in 1906
;

also Agriculture, and Railway Service—in 1907 ; the reports upon
these trades were published separately at different dates between

1909 and 1912, and the following trades were bulked together in

one volume, published in 1913—Paper and Printing ; Potter}-,

Brick, Glass, and Chemicals ; Food, Drink, and Tobacco ; and
Miscellaneous Trades.

The Cost of Living Inquiry of 1912 was in continuation of a

similar inquir}- in 1905, wliich in addition compared conditions in

the United Kingdom and certain foreign countries. It dealt not

only with wages but also with rents and retail jyrices.

The report states that ' particulars as to the rent and accommo-
dation of typical working-class dwellings were obtained from

officials of local authorities, surveyors of taxes, house owners and
agents, and by house-to-house inquiry.' Also ' returns of the

prices most generally paid by working-class customers for a number
of specified commodities were obtained in each town by personal

inquiry from a number of retailers engaged in working-class trade.'

Since then Lord Sumner's Committee and a Committee of tha
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Agricultural Wages Board have examined the change in the cost of

living between 1914 and 1919, as evidenced by a number of house-

hold budgets collected from among urban working-classes and

workers in rural districts respectively.

One other highly important inquiry carried out by the Board of

Trade deserves notice, namely, the First Census of Production of the

United Kingdom (1907).

The published report shows :

—

«

(1) The total Net Output in Money Value for each Trade Group

in each Industry.

(2) The Number of Persons Employed in each Trade Group

(salaried persons and wage-earners exclusive of outworkers).

(3) The Net Output per Person Employed in each Trade Group

as deduced from (1) and (2).

(4) The Horse-power of Engines in Mines, Quarries, or Factories

Employed in each Trade Group.

It is explained that the term ' net output ' here represents the

value of the aggregate output of the factories, etc., from which

returns were received in each trade group, after deducting the cost

of materials purchased from factories, etc., not included in the

group, or supplied by merchants or others not making returns to

the Census of Production Office.

Valuable as the results of these inquiries undoubtedly are, they

would be of still more value were it only possible satisfactorily to

collate the various returns of population, wages, and production.

No record of wages was included, for example, in the Census of

Production statistics, and it is quite impossible to deduce the number

of wage-earners and those dependent upon them in any trade at

any given time.

Apart, however, from such special inquiries as we have instanced,

and the ten-yearl}^ census of the people, there are other periodical

records issued Avhich jarovide us with valuable information. The

Ministry of Labour, until recently a special branch of the Board

of Trade, charged Avith the duty of keeping in touch with labour

.conditions, issues each month a Labour Gazette giving particulars

relating to the state of employment in the principal trades in the

United Kingdom based on returns from employers, trade unions,

and employment exchanges, besides information concerning trade

disputes, changes in wages and hours, the course of prices, railw.

traffic receipts, foreign trade, etc. The Board of Trade also jsub-

lishes M-eekly a Journal and Commercial Gazette dealing A\'ith matters

of interest to all who are engaged in commerce or finance ;
while a
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Monthly Bulletin of Statistics of production, trade, finance, employ-

ment, etc., at present issued under the name of the Supreme

Economic Council, is an important recent addition to our knowledge

of international statistics.

Again the Registrar-General makes a quarterly return and annual

summary of births, marriages, and deaths in the different counties

of England and Wales, and of births, deaths, and infectious diseases

in certain large towTis. In each public health area the medical officer

reports periodically upon the hygienic condition of the district and

the health of the people under his care. The Board of Education

is answerable for conditions in the schools, and the Home Office

in factories and prisons ; they report from time to time. The

Ministry of Health similarly issues returns relating to pauperism

and to housing, while the Board of Agriculture and Fisheries registers

the acreage under crops and the number of live stock in the United

Kingdom, and the Commissioners of Customs record the expansion

or contraction of foreign trade.

In addition we have the endless accounts and statistics supplied,

some voluntarily and some compulsorily, by municipal bodies,

l^ublic companies, banks, trade associations, co-operative societies,

insurance companies, trade unions, etc.

And yet, in spite of all this wealth of statistics, some surprising

gaj)s occur, as we have already seen, in important particulars

which cannot be traced. We shall quote only one more instance

of such a hiatus—the income-tax returns provide a basis for measur-

ing that part of the national income which is subject to taxation,

some idea also can be formed of what the wage-earners receive,

but as to the earnings of the portion of the community falling in

between these two classes we are entirely' ignoi'ant. It is possible

that war conditions during the years 1914-19 may have vastly

increased the knowledge of the Government as to some matters

such as internal resources and inland trade, of which little Mas'

loiown before, but, if so, the public, ^hom it concerns so closely,

have not yet been permitted fully to share in this advantage.

For an excellent summary of labour statistics compiled or col-

lected by the Government the reader is recommended to consult

the Annual Abstract of Labour Statistics of the United Kingdom,

Dublished in the past by the Labour Department of the Board of

rade.

Note.—A most useful Guide to Official Stati»(ics is now issued l»y H.M.iS.O.
Dr. Bowley's Official Statistics will repay careful study in conjunction with it.
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A NOTE ON TABLES TO AID CALCULATION

The short tables which follow are only inserted as specimens, as

it is expected that the reader who wishes to make extensive use

of such tables will have access to the fuller ones to which reference

is made below.

2-00 2-50

Probability Integral Table, giving area of curve z= ~~--=^e
*^'' in

V27T

terms of corresponding abscissa, see fig. (55) :

—

i Kl + a) a 1 ill + a) a

•00 •50000 00000 •76 •77637 •55274

•10 53983 07966 77 •77935 •55870

•20 •57926 •15852 •78 78230 •56460

•30 •61791 23582 •79 78524 •57048

•40 •65542 31084 •80 78814 •57628

•45 •67364 34728 85 •80234 •60468

•50 •69146 38292 90 •81594 63188

•55 •70884 41768 95 82894 •65788

•60 •72575 45150 100 84134 •68268

•65 •74215 48430 105 •85314 •70628

•70 •75804 51608 110 •86433 •72866

•71 •76115 52230 150 •93319 •86638

•72 •76424 52848 200 •97725 95450

•73 •76730 53460 250 •99379 •98758

•74 77035 •54070 300 •99865 •99730

•75 •77337 54674
!

1

3-50 •99977 •99954

Fig. (56), the result of plotting a against |, enables us to estimate

the probability of an error tying between any two limits.
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Table giving P, to test ' goodness of fit,' corresponding to certain

v.alues of n' and yj :

—

v' x-->i 5 C ' 8 9 1<» 11 12 13 1^

02964

15

•02026•<;7Ht)8 •54381 i •42319 ' -32085 -23810 •17358 •12465 •08838 06197 •04304

S •7707S •OoniXi -53975 ^42888 -33259 •2520(i •18857 •13862 10050 -07211 •05118 •03600

;» •s:.7i2 •757-58
'
-0472:5 ^SfJOo •4:'.347 •34230 •20503 •20171' 1512(1 -11185 (18170 •(J5914

in •iHUl •834311-73992 •(53712 -53415 •43727 •35048 •27571 21331 -10201 .122:52 •09094

11 •1)4755 •891181 •81520 ^72544 •02884 •53210 •44049 •35752 i ^ajOO -22307 17299 -1:J2(J«>

Vl •9()!);i2 •93117 -87330
\

-79907 •71330 •62189 •53039 •44326 -36204 •293:53 •23299 •182.50

X.\ •!)8344 •95798 [•91008 '•85701 •78513 •70293 •(;1590 -52892 -445(J8 •:?0904 •30(171 -24144

\\ •!»;ni!t 97519-94015 -90215 •84300 •77294 •09:;93 -01082 -52704 -44781 •37384 -:'.0735

15 •!)9547 -98581 ' -90049 i -93471 •88933 •83105 •70218 -08604 •60030 -52(152 •44971 -37815

One of the earliest tables of the probability integral appeared in

Kramp's Analyse des Refractions (Strasbourg, 1798), where the

calculation of J"e~^-<Z.T was given to eight places from a;=0 to a;=3
at intervals of 0-01. Tables more recent and extensive are those

due to J. Burgess [Trans. Roy. Soc. Edin. 1900) and to W. F.

Sheppard {Biometrika, vol. ii.,.pp. 174-190), Of these the latter

"
1 1 1 M i i i III "t^l \ \ \

iJ_ J . JJ- .L X L X u/ J £L - ' :f- 1

Graph}}f rhe^cirLe a- -7= j/|-e 1-f c ^

! !
' ^-. • * *

^^^'•*'''*^

' ^^ j

1 ^:i^0^
1

"^

^^^ J_ 1

^^
'^^ ^^ 1 , ^ ui ""

^
^

^
>'' . _' __ _ _ ±«^_ - _

J' - i/ X
Jl'X-
r< ' 1 _._ L^

1-50

IMU. (50).

2-00 2-50

is reproduced in the admirable Tables for Statisticians and Bio-

metricians, edited by Karl Pearson (Camb. Univ. Press, 1914), and

the same volume also contains Palin Elderton's P Tables for testing

' goodness of fit ' which first appeared in Biometrika, vol. i., and

Duffell's Tables of the Logarithms of the T Function from Biometrika,

vol. vii., besides a large number of other valuable tables.

It should be remarked in connection with the last-named table that

the formula P(.r-j-l)=.r T{x) enables us to reduce the calculation

of any T function to one in which x lies between 1 and 2, by repeated

applications of the logarithmic relation, thus

logr(x-+l)=log.r+logr(x)

=log .r+log (a;--l)+ log r(a;-l),
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and so on. When x is large, however, say greater than 10, the

well-known approximate formula

(see, for instance, VVhittakers Analysis, § 110) will be found useful,

and it may also be WTitten

1
r(a;+l) n QoonQoo ,

0-03619121
,

.
,log —

^

^=0-3990899-f +* log x,

a form often convenient.

It may be of service to record here the values of a few constants

which frequently recur for speedy reference :

,

c= 2-718 2818 jr= 3I41 5926 logio 2=0-301 0300

1= 0-367 8794
c

Iogio7r = 0-497 1499 login 3=0-477 1213

logio 6=0-434 2945

logio(log,oe)= 1-637 7843

logio ^==1-600 9101
V27r

The statistician who has Pearson's Tables, Barlow's Tables of

Squares, etc., together with a good set of Tables of Logarithms

(unless he is so fortunate as to have a mechanical calculator, for

instance a Brunsviga, at his disposal) and of Trigonometrical

Functions such as Chambers's Seven-Figure Tables, may consider

himself amply provided for serious research and decidedly better

off than his predecessors aaIio prepared the way for him by doing

great work with much poorer tools.



MISCELLANEOUS EXAMPLES
[Selected from Lomion B.Sc. {Eeon.) Pass and Honours papers']

PART I

(1) Define the genus ' average,' and the principal species of that

genus. Adduce concrete cases in which (a) the Arithmetic Mean, or

(6) the Median, is specially appropriate.

(2) Supposing that statistics of rents of working-class dwellings

have been collected in a certain district for a seines of years, describe

some way of forming an index number showing the changes in rents

from year to year during the period. Give reasons for the process

you adopt, or state any advantages it appears to you to possess.

(3) Measure by whatever method you think most suitable the

correlation between the two following series, and show graphically the

relationship between the two series.

Exports Unemployment Exports Unemployment
per head. Index, per head. Index.

£ £
1884 6-5 8-1 1899 (1-3 2-2

5 5-9 9-3 1900 7-1 2-5

6 5-9 10-2 1 6-7 3-3

7 6-1 7-6 2 6-8 4-0

8 6-4 4-6 3 6-9 4-7

n 6-7 2-1 4 71 6-0

1890 7-0 2-1 5 7*7 5-0

1 6-5 3-5 6 8-7 3-6
o 6-0 6-3 7 9-7 3-7

3 5-7 I'O 8 8-5 7-8

4 5-6 6-9 9 8-5 7-7

5 5-8 5-8 1910 96 4-7

6 6-1 3-4 1 10-0 30
/ 5-9 3-5 o 10-7 3-2

8 5-8 2-9 3 11-4 2-1

(4) Apply some test by which the figures in the previous table can
be used to determine whether unemployment (as there measured)
increased or diminished in the 30 years.

(5) Exliibit the difficulty of comparing nations, in respect of poA\er
and prosperity, by means of statistics relating to [n) the number of
population, (6) occupations, (c) criminality, {d) exports and imports.

T
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(6) Draw up, with careful attention to form and detail and showing

all sub-totals, a blank table in which could be shoA\-n, for the years

1919 to 1923 inclusive, the numbers of students Avho entered for the

Final Examination for B.Sc. (Econ.), distinguishing Internal and

External Students, Pass and Honours Candidates, and the results of

the examinations (Pass or Fail in the case of Pass Candidates and

Honours I, II, III, Pass Degree. Fail in the case of Honours

Candidates).

(7) Define the geometric mean, and discuss its use in forming index

numbers of prices.

(8) The average prices of wheat and the quantities sold at four

markets are given as follows :

—

Market. Average Price per Qr. Quantity sold, Qrs.

A
B
C
D

27s. 3d.

28s. 8d.

29s. Id.

279. 2d.

36,000

1,000

16,000

12,000

Find the mean price for the four markets, weighting each local

average with the quantity sold.

Would it be possible for the average price at each of the above
markets to rise from one year to the next and yet for the weighted
mean price to fall ? If so, under what conditions ?

(9) Illustrate the necessity for standardisation when hetero-

geneous groups are in question by describing the methods of comput-
ing standard bii'th- or death-rates or family food-consumption.

(10) The following are the Annual Premiums required to secure

at death £1000 plus a Guaranteed Reversionary Bonus of £2 per cent,

on the sum assured under the Whole Life Policies of a certain

Assurance Company :

—

Age next
Birthday. Annual Premium.

25
30
35
40
45

£ s. d.

24 12 6

27 14 2

31 11 8

36 7 6

42 6 8

Find by any method of interpolation what the jH-emium would be
at age 36 next birthday.
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(11) Explain why the method of measuring the mortality from any
disease by the proportion of deaths from that disease to deaths from

all causes is essentially fallacious.

Criticise the following mode of argument in a recent blue-book,

containing anthropometric data with respect to school children :

The gradation in weight from the poorest group up to the wealthiest

is one of the most striking features of the tables. If A\e take all the

children of ages from 5 to 18, we find that the average weight of

the boy from a one-roomed tenement is 52-6 lb. ; of the boy from a

two-roomed tenement, oG-l lb. ; of the boy from a three-roomed

tenement, 60-6 lb. ; of the bov from a tenement of four rooms or more,

()4-3 lb.

(12) Show how to measure the ' trend ' and the ' fluctuation ' of a

series of numbers relating to economic phenomena, such as trade or

employment.

(13) Find the average age and the median age of the married men
included in the table below, and calculate one measure of dispersion.

Ages.

Maiiied ."Men. Widowers.

NuRiber of Men Average Age of Children Number of Men
OOO'a. under 10. OOO's.

Under 20 I 47
20— 34 •61

25— 99 •97 1

30— 132 W,0 o

35- 139 1^99 3

40 138 1-98 5

45 130 b53 7

50— 104 •95 9
55— 78 •48 11

60— 53 •20 13

65- 33 •09 13-5

70— 15 •06 10^5

75— 6 •04 7

80— 2 •04 4

(14) What do you understand by a weighted average ? Estimate
the average number of children of married men of all ages from the

data in the above table.

(15) Estimate the number of married men between the ages

52 and 53 in the same table, and also estimate at what age the

average number of children is a maximum. Illustrate each estimate

by a diagram.

(16) Define frequency group and standard deviation. Show that,

if m'2 is the second moment of any frequency group about any
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origin and rn., the second moment about the average of the group,

and X is the average measured from the origin, then m^^^m'^^x^-
Calculate the standard deviation of the ages of widowers sho^\^l in the

table of question (13).

(17) State the product-sum formula for the correlation coefficient,

and prove that if the means of rows and of columns of the correlation

table lie on two straight lines the equations to these lines are

'.(/. ij=zr~^x,

respectively, x and y being deviations of the variables from their

arithmetic means, r the correlation coefficient, and crj, o-y the

standard deviations.

(18) Below are given the populations of the County of London and
the four surrounding administrative counties at the Censuses of 1891
and of 1901 :—

Count}-.

Population.

1891. 1901.

London
Essex ....
Middlesex .

Surrey

Kent ....
Total .

4.228,317

578,471

542.894

419,115

807,328

4.536,541

816,640

792,314

519,654

936,240

6,576,125 7,601,389

(a) Assuming a constant percentage-rate of increase in each

administrative county, estimate its population in 1896 at a date

midway between the two Censuses.

(6) Assuming a constant percentage-rate of increase for the area as

a whole (London and the four surrounding counties), estimate the

total poi:)ulation at the same date in 1896.

Why does your estimate (6) differ from the sum of the estimates

under {a) ?

(19) Give as exact a definition as possible of the term ' Cost of

Living.' How far can the change in the Cost of Living be measured

over a period in which there have been considerable modifications of

diet or other changes in consumption of necessary commodities ?

(20) Discuss the methods of presenting A\age statistics by averages.

Illustrate by a diagram the following data :

—

Building Trades.—Men. Full time earnings. Median, 37s.
;

Quartiles, 29s. 6d., 40s. 6d. ;
5-9 per cent, received less than 20s.

;

2-8 per cent, received 45s. or more.

Estimate the average wage roughly.
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(21) Construct a diagram to show graphically the relationship

between yield of corn and rainfall from the data in the table below.

Years.
Yield per acre Rainfall in

Years.
Yield per acre Rainfall in

July, in inches.of corn, in bushels. July, in inches. of corn, in bushels.

1886 24-5 Mo 1896 40-5 617
7 19-2 2-40 7 32-5 3-59

8 35-7 3-83 8 300 2-84

9 32-3 4-45 9 360 3-42

1890 26-2 203 1900 37 415
1 33-5 1-88 1 21-4 2-63
o 26-2 3-71 2 38-7 4-78

3 25-7 2-20 3 32-2 341
4 28-8 1-58 4 36-5 5-23

5 37-4 601 5 39-8 4-78

(22) Find the correlation between peld of corn and rainfall in the
above table.

(23) Define (a) arithmetic average, (6) geometric average, (c)

median, (d) mode, {e) quartile.

Instance cases when (6), (c) and ((/) are speciallj^ appropriate.

(24) Comment on the form of grouping adopted in (26) Table I.,

and state any inconveniences that it presents.

Calculate approximately the values of the median and quartiles,

using a graphic method.

(25) Explain what is meant by the skewness of a frequency dis-

tribution. Give Pearson's measure of the skewness, and any other

way of measuring it.

Obtain some measure of the skewness of the distribution in

(26) Table II.

(26) Table I., showing the number of civil parishes in England and
Wales in which the population at the Census of 1901 lay between the
limits given in the column on the left :

—

Population.
Number of

Civil Parishes.
Population.

Number of

Civil Parishes.

1,557

842

2,411

413
241

273

None
1 and under 50

50 „ 100

100 „ 200
200 „ 300
300 „ 400
400 „ 500

25
812

1,339

2,503

2.036

1,410

1,038

500 and under 750
750 „ 1,000

1,000 „ 5,000

5,000 „ 10,000

10,000 „ 20,000

20,000 and upwards

Total No. of CivU Parishe.^ 14,900
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Table II., showing the number of rooms measured, in a certain

investigation, in which the size lay between the limits given in the

column on the left ; area calculated to the nearest square foot :

—

Write a short account of the use of graphic methods in statistics.

Draw diagrams representing the data of Table I. and of Table II.

(27) Define the standard deviation, and show that the mean square

deviation is least when deviations are measured from the aiithmetic

mean.
Fmd the mean and standard deviation for the sizes of the rooms

given in (26) Table II.

(28) What corrections are applied to the crude death-rates of

areas in order to obtain comparable rates ?

(29) (1) Estimated average weekly wages of agricultural labourers

in thirtj^-six counties of England in 1891. and (2) the percentage of

the population in receipt of poor law relief, in rural unions of the

same counties, on 1st January of the same year :

—

Percentage
in Receipt
of Relief.

County. \Yages.

s. d.

1 18 6
o 18

3 17

4 17

5 16

6 16

/ 15 G

8 15 6

9 15

10 15

11 15

12 15

1-7

2-3

2-5

21
30
21
2-8

2-7

3-5

31
31
$>-7

County. Wages.

s. a.

13 14 8

14 14

15 14

16 14

17 13

18 12

19 12

20 12

21 12

22 12

23 12

24 12

Percentage
in Receipt
of Relief.

County. Waj. es.

Percentagf>
in Receijit

of Relief.

s a.

3-6 25 12 4-9

31 26 12 4-7

40 27 12 39
2-3 28 11 6 40
2-8 29 11 6 4-5

4-5 30 !1 6 4-2

4-7 31 11 5-2

4-7 32 11 4-2

5-7 33 10 6 4-2

41 34 10 3-2

4-9 35 10 4-4

4-2 36 10 4-8
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Define the arithmetic mean, the median and the mode, and give a
sketch of a skew frequency distribution showing the approximate
position of each.

iState the chief advantages of the arithmetic mean as a form of

average, and find the arithmetic mean and the median for the wages
of agricultural labourers in the above table.

(30) p]xplain clearly the meaning of the term ' dispersion,' and
find the mean deviation from the median for wages in the same
table.

(31) Also, define standard deviation, and find the standard
deviation of these wages.

(32) Using the data in question (29), test graphically, with squared
paper, the correlation between average wages and percentages of the

population in receipt of poor law relief, stating your conclusions in

Avords.

(33) Construct a blank table, complete with headings and Unas, and
with due regard to spacing, in which could be inserted the numbers
of persons employed in six groups of industries, four grades of age at

three different periods.

(34) The following table gives for 780 weeks the call discount rate

and the ratio of reserves to deposits in New York. Calculate the

average discount rate for the various ratios of reserves to deposits,

and ex2:)ress the results graphically.

Call Discount Rates.

1- 2- 3- 4- .5- 6- r s- 9 10 12- 15- 20- 25- Totals.

Ratio

of

Reserves

to

Deposits.

217,-
237,-
257,-
277,-
29°/,-

317,-
337,-
357,-
37°/.-

397;-

417o-
437,-
457.-

"6

25
47
36
22
18
36
20
2
2

72
87
26
6
2
2

n

57
31
11

1

1

1

33
42
13
4

3

1

1

30
36
3
1

'2

27
16

9

t

2

...

'3

6

1

1

"3
2

4
1

"i
>7

i

"i

...

1

"i

...

...

...

...

3
10

127
239
162
89
46
24
20
36
20
2
2

Totals, . 214 195 109 97 72 45 18 10 4 7 1 3 1 4 780

The heading 15- covers all rates of 15 and over but less than 16,

etc.

From the folloA\ing data find the equation of the regression line

giving the average discount rate for all ratios of reserves to deposits,
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and plot the line on the same diagram. Is the use of the product
moment metliod of determining correlation justifiable in this case ?

Means. Standard Deviations. Correlation.

Call Discount Rates
Ratios of Reserves to Deposits

3-6

30-3

2-5

4-2 } -..

(35) As an illustration of the nature of definitions in statistics

explain fully the meaning of the statement :

' The total value of

exports (produce and manufactures of the United Kingdom) in 1918
was £498,473,065.'
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PART II

(1) Give a short aocount of the cliief offieial publications, in

England, relating to statistics of one of the following subjects, with

especial reference to the source and the precise meaning of the data :

—

(a) Vital statistics (births, deaths and marriages).

(6) Foreign trade,

(r) Agriculture.

(2) What do you understand by the words " frequency group '
?

England and Wales, 1911

Ages . . . .10-15-20- 25- 35- 45- 55- 65-

All Occupied (Males 000s.) 246 1164 1146 2225 1815 1262 723 299

Coal Hewers (00s.) . . 63 338 538 1067 798 467 212 50

Comj)ute suitable a^erages and measures of dispersion for the

comparison of the age groups in this table and comment on the results.

(3) What means are available for testing the significance of

differences between statistical coefficients ? Test whether the

differences between the means and measures of dispersion for the

two series given in the previous question are significant.

(4) 5^=4-53 and .s.,=3-71 are the standard deviations of two groups,

.Tj, .i;^ . . . .T„, and y^, y.^ . . . y„. Sxy=^S32. n^lOOO.
Explain exactly the meaning of standard deviations. Calcu-

late the product-sum coefficient of correlation between the groups,

and state what it measures. Write down the probable error of the

coefficient and explain its meaning.

(5) Find the standard deviation of the differences between corre-

sponding values of two variates x and y.

(6) Set out in detail the method by which you would make graphic

comparisons of two such series of figures as Imports of Manufactures
and Unemployment.

(7) If the recorded births in a certain district may be in defect by
X per cent., and the estimated population in error Ijy iy per cent.,

find an approximate expression for the greatest possible error in the

birth-rate, x and y being assumed fairly small (say, not more than
5 per cent, or so).

(8) Given five thousand different figures

—

e.g. quotations of prices,

or measurements of human statures—how A\ould you (a) select five

hundred figures at random from that total, and (b) ascertain the
probability that the average of the five hundred selected figures does
not differ from the average of the five thousand bj^ more than any
assigned extent ?

U
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(9) (a)

STATISTICS

>•'amber of Persons
per Tenement.

Number of Rooms per Tenement.

Total.

Approx.
Average
Numt)er

of
Rooms.2 3 4 5 6 7 8 9

10
or more.

1

2
3
4

6
6
7
8

26
14
5
4
3
2

9
24
24
16
18
8
5

1

8
60
61
57
36
21
18
14

5
40
57
44
42
43
14
11

1

29
34
27
21

}?
10

4

1?
16
6
4

5

1

8
8
3

5
5
3
2

1
3
3
2
5
3
2
2

1

4

5
10
12
7
4

4

56
191
208
179
148
112
62
44

3-5

4-8

5-0

5-2

5-3

5-4

5-5

5-7

Totals, .

Average Number
of Persons,

M
2-07

105

3-56

275

394

256

4-24

152

4-24

55

3-78

35

414

21

4-62

47

481

1000

3-976

51

Standard deviations : persons 1-83, rooms 1-9 (approx.)-

(6) Show that the coefficient of correlation can be expressed in the

form
1

[~^{xy)-xyj,

where x, y are the averages of the observations referred to any origin.

(c) Calculate, by any method, a measurement of the correlation

between the number of rooms and number of persons per tenement
shown in (a).

(d) Calculate the third and fourth moments of the frequency

curve of persons ; determine the position of the mode and also

determine the skeAvness by any method knoTMi to you.

(10) The table given below gives the results of the measurement of

series of 959 Oxford Students and of 2348 convicts. Find what, if

any, differences between the statistical constants given are significant

and comment on the results.

Character. Data. Means.
Standard

Deviations.
Coefficients of Correlation

with Stature.

Head
length

f.Students

K'onvicts

196-05

192-44

6-23

6-39

•31

•26

Head
-breadth

/students
\Convicts

152-84

151-02

4-92

5-49

•14

•15

Head
-height

/Students

1^Convicts

136-62

132-29

5-80

5-21

•28

•19

Stature
/Students
\ConA'icts

69-49

65-44

2-60

2-65

—
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(11) Cive a short account of the nature of the information con-

tained in one of the following : Census of Production, 1907 ; Reports
on Wages in 1906 (the ' Wage Census ') ; Reports on Buildings and
Tenements (housing and overcrowding) in the Population Census,

1911.

(12) Outline a method by which the normal curve of error can be
obtained as the limit of {p-\-q)".

(13) Discuss (a) the best means of obtaining accurate statistics of

family expenditure, and (6) the best means of combining such data so

as to form a representative type.

(14) Define the following terms and give illustrations of their use :

interpolation, standard deviation, moment, skewness, logarithmic

scale, geometric mean, partial correlation, normal curve of error.

(15) In m trials an event has happened r times. How vi ould you
determine the probability that this result is consistent with the

hypothesis of random sampling from a universe in which the chance
of the event happening is a certain small quantity p ? Why cannot
the required probability be derived from a table of the normal curve
of error ?

(16) If m^, m.^ are the numbers of deaths occurring in a year among
Nj, Ng persons of two different occupations, the standard deviation

by which the significance of the observed difference in the death rates

per 1000 can be tested is given as

iooo^{^^^(^7^^^+^^^^^7^^^}.

Show how this formula is obtained and criticise it.

(17) Contrast the methods used in the construction of any two
current index numbers of wholesale prices. Under what conditions

is ' weighting ' important in index numbers 1

(18) Analyse in some detail the cases in which it may be assumed
(1) that a frequency distribution is normal, or (2) that the proba-

bility of errors in a measurement or observation exceeding various

amoimts is determinable by the normal table of probability.

(19) What methods are available for testing the ' goodness of fit

'

of a mathematical curve to observations ?

(20) If z=a;i-(-a;.2+ • • • +-'^h, where the .r's are deviations from
the average of quantities selected at random and independently of

each other from a curve frequency whose standard deviation is o-,

show that the standard deviation of z is r-^, n being finite.

sin
Under what circumstances can it be shown that the curve of

frequency of z is normal ?

(21) What methods are available for classifying frequency curves

into types ? State briefly the mathematical concepts underlying the

Pearsonian classification of frequency curves.
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(22) Explain how the necessity for Sheppard's corrections of

moments arises.

If Wj is the second moment calculated from observations when all

are supposed to be grouped at the middle of grades whose breadth is

h, show that Wo+ -^ is the second moment if it is assumed that the
2 12

observations are evenly distributed through the grades.

(23) A sample containing 1000 is drawn at random from a large

universe and 300 are found to possess a certain attribute. Can you
infer anything as to the proportion in the universe that have this

attribute, or what further information is needed ?

(24) Discuss the effect on a weighted mean of errors in the

quantities or the weights.

(25) Write a brief note on the assumptions made in calculating the

probable error of a statistical quantity, such as the standard deviation

or the correlation coefficient.

(26) Calculate the average, second, third and fourth moments,
mean deviation, standard deviation and skewness of the frequencj^

groups of chest girths shown in the following table :

—

Height and CHE9T Girth or 1126 RkcRUITS OF L8Y •-AR-S OF AQE.

Chest Girth
in Inches.

Height in Inches.

Totals.

tiO til 62 63 64 65 66 67 OS 69 70 71 72

28 1 1

29 1 1 ... 2
30 i "i 3 1 1 2 9
31 2 !) 8 3 4 6 7 3

'2
i 47

32 8 18 24 29 36 12 16 5 8 2 1 159
33 6 U 21 30 42 22 36 17 8 9 i 3 i 207
34 6 16 1.5 43 52 43 21 40 28 12 1 3 280
35 6 15 25 32 32 2;i 29 18 16 14 2 i 219
36 4 3 6 11 22 18 18 18 19 U 2 127
37 1 3 1

"4
12 6 8 6 G 1 "i 49

38 •>
1 1 1 4 3 4 4 2 22

39 ... 1 1 2 4

Totals, . . 23 68 91 140 180 143 144 121 97 71 30 14 4 1126
Averages of

Arrays, 32-7 33-6 33-5 34-2 34-1 34-7 34-7 350 351 35-5 36-3 35-4 34-5 34-51

Standard
Deviations
of Arrays, . 1-75 1-87 1-57 1-34 1-33 1-50 1-76 1-40 1-77 1-67 1-3 1-8 2-2 1-66

Average height, 65-6 ; standard deviation, 2-52.

Compare the relations between the quantities calculated with those

that are found in the normal curve of error.

(27) From the above data draw the regression line (chest girth on
height), and with the help of your drawing find an approximate value

of the coefficient of correlation between height and chest girth.

In normal distributions the standard deviation of an array is

o-j Jl—r^ where a-^ is the standard deviation of the arrays merged in

one group. Are the standard deviations shown in the table con-

sistent mth this formula ?
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Graphical methods of calculation are becoming of ever greater importance
in theoretical and industrial science, as well as in all branches of engineering
piMctice. Nomography is one of the most powerful of such methods, and
the object of this book is to explain what nomograms are, and how they can
be constructed and used. The book caters for both the practical man who
wishes to learn the art of making and using nomograms, and the student

who desires to understand the underlying principles. It is illustrated by
sixty-four figures, most of which are actual nomograms, their construction

being analysed in the text. In addition, there are numerous exercises

illustrative of the principles and methods.

'A good introductory treatise . . . calculated to appeal to the student who
desires to make early practical use of the knowledge he acquires.'

T/ic Mfchanicnl World.

ELEMENTARY VECTOR ANALYSIS
With application to Geometry and Ph) sics. By C. E. Weatherburn,
M.A., D.Sc, Professor of Mathematics, Canterbury University
College, Christchurch, N.Z. Demy 8vo. I2J-. net.

This book provides a simple exposition of Elementary \'ector Analysis,

and shows how it may be employed with advantage in Geometry and Mathe-
matics. The use of \'ector Analysis in the former is abundantly illustrated

by the treatment of the straight line, the plane, the sphere and the twisted
curve, which are dealt with as fully as in most elementary books. In
Mechanics the author has explained and proved all the important elementary
principles.

LONDON: G. BELL AND SONS, LTD,
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ADVANCED VECTOR ANALYSIS

With Application to Mathematical Physics. By C. E. Weather-
KURN, D.Sc, Professor of Mathematics, Canterbury University

College, Christchurch, N.Z. Demy 8vo. I5.f. net.

'The author has already published in this series an Elementary Vector

Anaivsis. In this companion volume he deals with the higher part of the

subject and the applications of the theory, including a chapter on the Equa-

tioins of Maxwell and Lorentz and the Lorentz-Einstein transformation.'—

Times.

THE ELEMENTS OF NON-EUCLIDEAN GEOMETRY
By D. M. Y. SOMMERVILLE, M.A., D.Sc, Professor of Mathematics
Victoria University College, Wellington, N.Z. ^s. 6d. net.

'An excellent text-book for all students of Geometry.'

—

Nature,

'A useful and stimulating book.'-- Mathematical Gazette.

ANALYTICAL CONICS

By D. M. Y. SOMMERViLLE, M.A.. D.Sc. Demy 8vo. 15.C. net.

In this book the elementary properties of the Conies are first of all dealt

with, and thereafter the higher portions of the subject, such as Conies

referred to any axes, Homogeneous Co-ordinates, Invariant and Covariant

]iroperties of Conies, etc. There are abundant collections of examples in

all the subjects treated.

A Professor of Mathematics writes: 'I find it a work entirely praise-

worthy ; and indeed of such excellency as one would expect from the pen

of the author of The Elements of Non-Euclidean Geometry. The variety of

topics treated is more extensive than that to be found in most existing text-

books on the subject. In certain instances the treatment is refreshingly

novel, and in all cases the presentation is concise and lucid.'

A TEXT-BOOK OF GEOMETRICAL OPTICS

By A. S. Ramsey, M.A., President of Magdalene College, Cambridge.
New and Revised Edition. Demy 8vo. 8^. bd.

This is a revised edition of the work published in 1914. It contains

chapters on Reflection and Refraction, Thin and Thick Lenses, and Com-
binations of Lenses, Dispersion and Achromatism, Illumination, The Eye
and Vision, Optical Instruments, and a chapter of Miscellaneous Theorems,
together with upwards of three hundred examples taken from University an

College Examination Papers. The range covered is somewhat wider tha.

that recjuired for Part I. of the Mathematical Tripos.

LONDON: G. BELL AND SO N S, LTD.
York House, Portugal St., W.C. 2.
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